(AAa)—

W 8 proper position 13 2
performs very well (BTech veemi s ————

works recursively. by Y well onalonger list It | The e "\ (V Sem) C.S. Soled P
Bom e Bt (et qﬂ” selecting a random “pivot value™ | we .Hﬂ.:.«l:ksm of elements with the first element lysis of Algorithms) {AA3)
that are loss than t 1 parutions the list nto element: 0 the elements smaller than the fi e oy Substitution method i b

" the pivot and greater reduced to the * | 0 this case exchange of both the e {irst elemeat. Thus T(m - 2T(n/ elements are typically floating point numbers. For n > 2. the
o “ﬂ.‘-‘d sublists. It is 1o be noted that i ..uacﬁgaz!.: whole procedure costhati E.___._ o___n.”n:_u takes place. The (n) = -ﬂ\uv,vu.: elements of C can be computed using matrix multiplication
o ack 30 s . Hon ste a 1 all the elem L - 7 4
...-_r.v.-rz,' nl,.... finds the final position of particular ngu o“:“o_.ﬂuhwﬂ_a .M.: the left side of the n_nz,n__ﬂ__pﬂ%m._”ﬁqﬁv T = .TﬂGL...u.umTu.: b ..Aq.b+ 3*n+3%n | and addition operstions applied to matrices of size M) W_

accomphished . . t! 1 ¢ ¢ : ng
the list from the right 1o _457-”.'_-:””%5‘. last element of | the list is ucv&m__mwm__.”ﬁnﬂ. j.mﬂm_nq than the pivot. Thus - .«T;u.mu,;.g\._f Atned=n SIS I W e 4 23U BN SR G b
. checks WO ; is sorti : £ cursi v i

L considered as an in place w:.”,n “mF e, 1 b m;“rm +3*n+3*n+3*n o a e Thls e i e gt I

Previous YEe

tuses no other array storage

/
ARS QuUEsTIONS

i
’,,

Jorj =l wide
fork=]pejde

X = x4 [R.TU. 2013]

Ans. Frequency count for ¢ for loop = n+1
Frequency count for j for loop = nx(i+1)
Freguency count for & for loop = nxix(j+1)
Frequency count for x = x+1 = n+ixj

Q2 Determine the frequency counts for all statements
in the foi.. wing segments :

i=] -]

while (i s n) do 7

{ 0]

x=x+l; \f'\

i=i+] \

] IRTU 2013]
Ams. Frequency count fori=1 =1 Z

Frequency count for while loop =n+1 4

Frequency count forx =x+1=n

_..r..u. ._dn maximum amount of time
for an input of size, “n"
. complexity.

needed by an algorithm

» 1s referred to worst case time

ParT-B

Tm=2 ifn=2

T(n) = 2T(w2)+3n ifn>2

ol :

Q.6 Solve the recurrence relation for time complexity: M\
Ll

IR.T.U. 2018, 2016, 2014]

Ans. Recurrence Tree Method : The Recurrenc
T(N=2T(n2)+3*n,

Mﬂau d, when n is a power of 2(n = 2 k
X
Y =]

)

=log(m) \]

Totsl Time 4

ot K.nr*\

Frequency count fori=i+1=n

Amns. The amount of memory needed by program to run to
completion is referred to as space complexity.

<. The amount of time needed by an algorithm to run to
%ﬁri!iivg. :
\%

ﬂ/
iuaa‘,... Total ume .
Lume)°n by level
2an7)= 3
Total Time
th
J 2= a2 Sub problems ~:__“._.M-r_.g
n Iike thas —itn
_ 2" = n Sub problems total ime &t
_ ke thas s sl

Tin) = tetal time = k(3*n) + dn
= In log{n) + dn
= (niog (a}!

v

ualuﬂ.w.vu.:.* +3%n+3*n+i®n

FM =0n+n+ +3*n+3%n+3*
=nlogn

n

xplain Strassen’s matrix multiplication & derive
_its complexity also? Justify how is it better than
ordinary matrix multiplication.

nv\\
o V [R.TU.
‘ M\ OR
.‘\W Describe strassen’s method of matrix multiplication.
/ IRT.U. 2015

2018, 2016, 2010}

‘ Ans. Strassen'’s Matrix Multiplication : Let A and B be
two n x n matrices. The product matrix C = AB is also an
n x n matrix whose i, j"" element is formed by taking the

~Telements in the i row of A and the j™ column of B and

A / %:__:Ev.:.m them to get

\ Ay CGi,j)= :M:%.:u?w
?4 for all i and j between | and n. To compute C (i, j) using
" this formula, we need n multiplications. As the matrix C has

~— n? elements, the time for the resulting matrix multiplication

n_moquz.s_:. which we refer to as the conventional method is

@ (p).

0 ("' The divide and conquer strategy suggests another way to

~~eompute the product of two n x n matrices. For simplicity, we
assume that n is a power of 2, that is, that there exists a non-
negative integer k such thatn= 2%, In case n is not a power of
two, then enough rows and columns of zeros can be added to
both A and B so that the resulting dimensions are a power of

. :

Imagine that Aand B are each partitioned into four square

n_n
.Then

le

. 2 2

the gfoduct AB can be computed by using the above formula
the product of 2 x 2 matrices : if AB is

—”.#: _}_u gﬁw: wz H— ﬁwnz O: g .
>w_ >uu wu_ muu nu_ Ouu
then
Cy=A; B +Ap By
Cp=A;Bp+A;pBy
Cy =Ag By +Apn By
Cy=Ay By tAnBy
If n = 2, then formulas (2) and (3) are computed using a
multiplication operation for the elements of A and B. These

——

ﬁ submatrices, each submatrix having dimensions

the n x n case. This algorithm will continue applying itself to
smaller-sized submatrices until n becomes suitable small
(n = 2) so that the product is computed directly
To compute AB, we need to perform eight multiplications
of Mx m matrices and four additions of m x m matrices. Since
“nn r 3 2 2
two - %= matrices can be added in time cn” for some constant
¢, the overall computing time T(n) of the resulting divide and
conquer algorithm is given by the recurrence
o) n* b i ns2
8T(n/2)+cn’ , n>2

where, b and ¢ are constants.

Since matrix multiplications are more expensive than
matrix additions (O(n’) versus O(n%)), we can attempt to
reformulate the equations for C, so as to have fewer
multiplications and possibly more additions.

Volker Strassen has discovered a way to compute the
C,’s of using only 7 multiplications and 18 additions or
subtractions. This method involves first computing the seven

n_n
2 %
computed using the formulas. As can be seen, P, Q, R, S, T, u
and V can be computed using 7 matrix multiplications and 10
matrix additions or subtractions. The C's require an additional
8 additions or subtractions.
P=(A; +Ay) (By + By)
Q=(Ay +Ap)By
R=A (B;;-By)
S$=Apn(By -By
T=(Ay +A;p)Byp
U=(Ay—Ay) (B, +Byy)
V=(A;;~Ap) (By + Byp)
C,=P+S-T+V
Cp=R+T (5)
Cy=Q+S
Cnp=P+R-Q+U
The resulting recurrence relation for T(n) is
() = b n<2
A:vuﬁq.z:;?ru:u n>2
where a and b are constants. Working with this formula, we
get
T(n) =an? [1 + 7/4 + (4P + ..+ (4] + T (1)
<cn¥(7/4) logyn + Tlog,n, ¢ is a constant
=c,log,4 +log, 7 ~log, 4 +nlog, 7

uD?.SZ.TO?N.J.

matrices P, Q, R, S, T, U and V. Then the C,’s are

(@)

\0)

,e Solve the following
¥ rtheir complexities using master method
® Ty=21(Jn)+logsn
() Ttn)=4T(n/ 2)+n?
Ans.(i) T(n)= 2T(¥n)+logy n
We have a=2, b=1, f(n)= log,n and
nloBa _ plog,2 _ | iog2
since f(n) = ('8 2+¢)

where €= 0.2 applies if we can show that the regularity

condition holds for f{n).
For sufficiently,large n, i
af(Vn)= m,\m_om,\m < u,\m_am_..
-=cf(n) for c=2
Hence solution is
T(n) = 6logy, n
(ii) T(n) = 4T (n/2) + p2
We have a =4, b =3, f{n)=n?
and nlogsa _ nlos: 4
Since f(n)O(n'08:4-
Then solution is

T(n) = 0n?

) where e=1,

Q.9 Consider the following function
int Sequential Search(int Afl, int & x, int n)
{

 Inti;

For (int i=, i<n & & afifI=x;i*)

If (i=n return i)

7

Determine the averag

of the function Sequential Search,

Ans. The worst case
at last position ~

ﬂt!uli_?vna
=0 (n)

. O....qndmo.ina.m: mann_nmﬂsuvoﬁruw?-wiuo&o
list, tn.i.: compare -.mmmn.nsb items, As n gets large, the

recurrence relations and find

(RTU. 2018, 2012/

e and worst case complexity
R.T.U. 2017

time complexity when element is found

—{(B.Tech. (v Sem) C.5, solved Papen

(Analysis of Algorithms)

e
O
Q.10 Show ail the steps of Strassen’s matrix multiplicatio,

algorithm to multiply the Jollowing matrices.

3 2 15
k = =
: _HA L and ¥ _H.o QH%

= TR T
Ans. Strassen’s Multiplication Method

x=[1]
v=[u(3
-l

p; =a(f-n)
=3(5-6)
=-3

P2 =(a+b)n
=(3+2)x6
=30

P3=(c+d)e
=(4+8)x1
=12

Py =d(g-e)
=8(9-1)
=64

Ps = (a+d) (e + n)
=(3+8)(1+6)
=77

Ps = (b-d) (g +h)
=(2-8)(9+6)
=-90

Pr=(a-c)(e+f)
=(3=4)(1+5)
=6

IRTU. 2017

ﬁlﬁﬂ..:u.lvu.rﬂ- Pitp;
Pr+Ps—py,-p,

P;+p,
T?iuuoug -3430
12+ 64 =3+77-12+6

21 27
“ 176 68

Explain best-case, average case, worst-case running
time of merge sort algorithm. [R.TU. 2014]

Ans. Analysis of Merge Sort)

Merge sort repeatedly divides an array into equal/near
equal sub arrays until the size of each sub-array is reduced to
1. Then, starting from the left hand side consecutive two mz._u
arrays are combined together in sorted oa.oa. recursively. This
process is to be repeated until we get a w..aw_n array at o:m._.

Merge sort incorporates two main ideas to improve its
runtime :)

1. A small list will take fewer steps to sort than a large list.
2. Fewer steps are required to construct a sorted list from
two sorted lists than two unsorted lists.

Analysis

s 22[w][3] s [10]

— A
el 2] 4] 3]

.

y -
BlolwlzTnlsa [w)

A recursive merge sort algorithm used to sort an array
of 7 integer values. These are the steps a human would take
to emulate merge sort (top-down).

In sorting n objects, merge sort has an average and
worst case performance of O(n log n). If the running time of
merge sort for a list of length n is T(n), then the recurrence
T(n)=2T (0/2) + n follows from the definition of the algorithm.

In the worst case, merge sort does an amount of
comparisions equal to or slightly smaller then (nlogn-20esm
*+ 1), which is between (n logn-n+1)and(n logn+n+0
(log n)).

1.O(n log n) best, average and worst case complexity because
the merging is always linear.

2. Extra O(n) temporary array and back.

3. Extra copying to the temporary array and back.

4. Useful only for external sorting.

ite an algorithm to search an element from a given
array by binary search method. Discuss the time
complexity of the algorithm. [R.TU. 2014}

E

\.I,
Ans. Binary Search

Binary search is a fast searching algorithm, but it works
only on sorted data. It adopts a divide and conquer approach.
Every time it reduces the size of list in which search is
performed.

The basic idea is very simple :

“If we have a list of elements, already sorted in increasing
order, we just have to compare the key we are searching
with the middle element.” Following situations arise :
+« Key < Middle Element : Hence, we should restrict
our search in first half of the list. All elements in list after the
middle element are greater.

» Key > Middle Element : We should restrict our
search in second half of the list. All elements in list before
middle element are smaller.

» Key = Middle Element : The search is over, We
have found the position of our key in the list.

In first two cases, we may recursively call binary search,
with list reduced to half. Thus, in recursive implementation
we keep on recursively calling binary search untill there is
only one element left in the list. This isthe base of recursion.
Here only two situations arise :

. Key = Element : Search is successful and we report

the position at which key was found.

. Key = Elment : Search fails. The key does not exist

in the list, since there are no more elements to compare with.
The algorithm can be implemented either as recursion

Or as iteration.

The recursive version of Binary Search

Binary Search1 (Key, A, Ib, ub)

/1 A 1s the array of elements

/1 key is value of element to be searched
/Nb gives lower bound of array

/lub gives upper bound of array

Step 1: if (Ib> ub)

Step 2 : return “Search fail”

Step3:m: = [(Ib+ub)/ 2]; //position of middle element
Step 4 : if (key = A[m])

Step 5 : return “Search successful at” m

Step 6 : else if (key < Alm))

Step 7 : BinarySearch| (key, A, Ib, m—1);

Step 8 : else BinarySearch (key, A, m + 1, ub);

The lower bound of array gives the position of first
accessible element. Upper bound gives the last element
accessible in array. Like, if we have a subarray from position
Stoposition 9, Ibis Sand ubis 9. Step 1 checks the condition
when array has no elements within the bounds. Since there
are no elements to compare with, search stops here and key
is not found. Hence failure is reported in step 2. step 3
calculates the position of middle element. To have an integer

is

It
Y,

is

Y,

(= a7 N

w o w

Ans.
M fn)=6x2"+p?
When nx4
n’ <2n

So, fln) S6x2"+27=7x2n
Hence fimy=0(@2"
Where, C =7

n,=4

n(n-1)

2

(i) F(n) =

Then n(n -) mo:._v

' 2
~* F(n)>O(n) we get

n(n-1)
2

F(n) =

i.e., maximum order is n which is> O(n)
Hence F(n) ¢ O(n)

But =?~| D con?) as F(n) < O(n?)
and =e._w| D eO(n*)
Similarly,
i:nu D cam) -+ F(n) 2 Q(n)
:e_u| D cqn?) -+ F(n)2 Q(n?)
ParT-C

ustrate the operation of merge sort on following

array 10, 20, 5, 23, 45, 34, 12. Also write the

~ algorithm & its complexity. [R.T.U. 2016]
-~ OR

Derive the recurrence relation for merge sort

algorithm’s time complexity. Also solve it.

[R.T.U. 2018]
OR

(Analysis @f Algorithms =

Determine the best case complexity of Merge sort
algorithm. [R.T.U. 2017]

Ans. Merge sorton 10, 20, 5, 23, 45, 34, 12 sorting the given
sequence using merge sort-

10, 20, 5, 23, 45, 34, 12

divide [10]20] 5 _H._ _&_ua@
I r

divide/sublist |10f{20| [5[23] [45]34] [12]

sort

merge and sort .

merge and sort ['s T1o]12]20]23]34]45]

Final sorted list: 5 10 1220233445 |

Algoritkm used to sort the sequence : MERGE - SORT
(P, q,A) . .

l.p«1

2.1 en

3g«(ptn2

4. MERGE SORT (p, q, A, 1)

5.MERGE SORT (q+ 1,1, A, p)

6. MERGE (p, q,A,r)

MERGE (p, 4, A, 1)

. mep-g+l
2. mer-q
3. L[L...m+1], L[l.... n +1] initialize line arrays
4, fori=ltom .
5. do L[i]=4[p-i+]]
-6 forjaytom
7. do FT_I\.T:Q.‘.&
8. fork=p tor
e, do for i=1to n
10. do for j=1to m
1. if 4lil<g|/]
12. then A [k] = L [i]
o [- ieitl
14, ~else A[k]= L[j)
15, jejtl

16. return A

-{ AA.T |
Algorithm & its Complexity : Algorithms for mergesort is
given below :

mergesort (int[]a, int left, int right)

{
if (right > left)
{

Middle = left + (right — left)/2;
mergesort (a, left, middle); =
mergesort (a, middle+1, right);
merge (a, left, middle, right); .
}
}

Assuming N is power of two,
For N =1 : time is a constant (denoted by 1)
else : time to mergesort N elemets = time to mergesort

| N72 element + time to merge two arrays each N/2 elements.

Time to merge two arrays each N/2 elements is linear, i.e.;
N. :
Thus, we have;
1. T()=1
2. T(N)=2T(N/2) +N
Dividing Step (2) by N: |
3. TNYN=T(N/2)/(N/2) + 1 -
N is power of two, so we can write
4, T(N/2)/(N/2) = T(N/4)/(N/4) + 1
5. T(N/4)/(N/4) = TQN/8)/(N/8) + 1
6. T(N/B)/(N/8) =T(N/16)/(N/16)+ 1
T ats
8. T(22=T(Y1+1. _
Adding Step (3) to (8), the sum of their left hand sides
will be equal to sum of RHS.
TN + T(N/2)/(N/2) + T(N/4)/(N/4) + ... + T(2)/2
4= TN/2Y(N/2) + TIN/4Y(N/4) + ... + T(2)Y2 + T(1)/1
+logN
Where log N is sum of 1’s on RHS.
9. TEYN=T(1)1+logN.
T(1) is 1, hence
10. TN)=N+NlogN=0ONlogN) °
hence complexity of merge sort algorithm is O(N log N)

_asymptotic notations.

[R.T.U. 2018, 2016, 2012)

eﬁ__ﬁ various

Ans. Asymptotic Notations: We represent the complexity
of any algorithm as a function of its input size n. Call it f{n).

Now, in order to have an estimate of the limits of this function,
we take another function g(n), for which we already know
the behavior [or it is easy to observe the behavior of g(n)).
The limits can be chosen according to what we desire -

overestimate, underestimate, etc.

(Aas)—

" “The Asymptotic Notation is a representation
which describes the limiting behavior of a function when
the argument tends towards a particular value or infinity,
usually in terms of simpler functions."”

Depending on the limit applied, the various notations are :
Big-oh Notation (O) : The upper bound for the function ‘>
*is provided by the Big oh notation (O).

Definition : Considering ‘g’ to be a function from the
non-negative integers into the positive real numbers. Then
O(g) is the set of function f, also from the non-negative
integers to the positive real numbers, such that for some real
constant c > 0 and some non-negative integers constant n,,

f(n)<cg(n) forall nzn,

For all values of n> n, function *f* is at most times the
function ‘g’. It can be noticed that for all *n’ a function may
be in O(g) even if f{n) > g(n). Thus, 'g’ provides an upper
bound by some constant multiple on the value off for all suitably
large V(i.e,n2n,). -

The set O(g) is usually called as oh of ‘g’ or big oh of
‘g’. As O(g) is explained as a set, it is a good practice to say
“fis oh of g” or “f is big oh of g".

Some common asymptotic functions are as follows :

constant : I,........ :

logarithmic : logn......

linear:n

quadratic : n?,

exponential ;: 2™,.....

factorial : nl,

cubic:n’,
In general,
O(g(n)) = {f{n) : There exists positive constant such
that 0<f<Cg(n)foralln, n2n, i
Example : For the function f(n) = 100 n + 6 from the
definition of Big oh Notation we can write,]
0<f(n)<cg(n)
0<100n+6<cn
Since, big oh niotation puts an upper bound on the given
function, constarit ¢ has value slightly greater than the
coefficient of highest order term.
The inequality can be made to hold for any value of
n 2 6 by choosing ¢ > 101.
Thus, for ¢ =101 and n, = 6, it is verified that
) 100 n +6=0(n)

Big Omega Notation () : The lower bound for the

function ‘f” is provided by the big omega notation (Q).
Definition : Considering ‘g’ be a function from the
non-negative integers into the positive real numbers. The
the set of function ‘f also form the non-negative
into the positive real numbers, such that for some

~{B.Tech. (V Sem.) C.S. Solved Papers)

. - {AA9)

(Analysis of Algorithms)

real constant ¢ > 0 and some non-negative integer constant
ng, f(n)2cg(n)foralln, n2n,.

For all values of n < n, function ‘f” is almost ‘c’ times
the function ‘g’ Here, ‘g’ provides a lower bound, by some
constant multiple, on the value of 'n' for all suitable large ‘n’
(iesnzn,).

Example : m,Q the function f(n) u_u__._w +2n+3, from

the definition of big omega notation we can write,
i 0<cg(n)<f(n)

or 0scn® <4n’+2n+3

Since, big omega notation puts lower bound on the given
function, constant ¢ has value slight ly smaller than or equal to
the coefficient of highest order term.

The above inequality can be made to hold for any values
of nby choosing ¢ < 4.

The value of n though needs to be a non-negative integer
greater than or equal to zero, ie, n20.

Thus, for ¢ = 4 and ng =0, it is verified that

4n’+2n+3=00%)

Thus, the given function is of the order of ©2(n?).

Big Theta Notation () : The lower and upper bound
for the function *f” is provided by the Big Theta notation (8).

Definition : Considering ‘g’ be a function from the
non-negative integers into the positive real numbers. Then
8(g) = O(g)~x(g) , that means, the set of functions that are
both in O(g) and Q(g). The B(g)is the set of function 'f' such
that for some positive constants c, and ¢, and an n, exists
such that cg(n)s<f(n)<c,g(n) for all n, n2n,. By

. “fn) = 8(8¢,))” we mean “f is order of g”.

find out the order of function f{n) =7n+5 in Big Theta

Notation
From the definition of Big Theta we can write,
cig(n)scg(n)

or cn<7n+5<5¢;n

or ¢, <Tn+5/nsc,

The right-handed inequality can be made to hold for
any value of n > 5 by choosing c, > 8. Similarly, the lefi-handed
inequality can be made to hold for any value of n> 5 by
choosingc, < 7.

So, Tn<Int5<8n
Thus, for ¢, = 7, ¢, = 8 and ng = 5, it is proved that

_ Tn+5 = B(n). In other words, f(n) is of the order of 8(n).

Little oh Notation (0) : Big oh notation imposes
asymptotically tight bound on function f{n). If we say that 2n
+3=0(n?), it is not the tighter bound on this function as we
have the smaller linear function that also satisfies the Big oh

relation, i.e., 2n + 3 = O(n).

Little o-notation denotes an upper bound same as Big
O notation, but this upper bound is not asymptotically tight
Formally, it can be defined as follows:
For a given function g(n), o(g(n)) gives the set of
functions f(n) as
o(g(n)) = {f(n) : for any positive constant ¢ > 0,
there exists a constant ny > 0
such tht0 < f{n) <c g(n) forall n > ng}
Thus, f(n) = o(g(n)) for any and every constant positive
value of c. As n becomes larger and approaches to infinity,
f(n) becomes insignificant as compared to g(n).
Mathematically,

lim f(n)/g(n)=0

Example : Examples of few correct bounds for little o
notation are as follows :
3n+5=0(n?), as 3n+ 5 =0O(n?)
10n? + 7 = o(n’), as 10n2+7 = O(n%)
But if we write 3n + 5 = o(n), it would be an incorrect
bound as

H.__r_.y_._an.T.L..mT.; =0

ie _w._nﬁmu=+&...=nunc

So, f(n)=3n+ 52 0(n)

Similarly, lim do_._u+d:._~ =10=20
n—+=o

Thus, f(n) = 10n? + 72 o(n?)

Little Omega Notation (o)

Big Omega Notation imposes asymptotically tight lower
bound on function f{n). To write that 3n + 5 = Q(n?) is not the
tighter lower bound on the function because it has the smaller
linear function that also satisfies the big omega notation, i.e..
3n+5=0Q(n). Little Omega denotes the loose lower bound
on the function. For above function, 3n + 5 = o(n?) is correct
bound. Formally it can be defined as follows:

For a given function g(n), o(g(n)) gives the set of
functions f{n) as w(g(n)) = {f(n) : for any positive constant
¢ > 0, there exists a constant ng > 0 such that
0 < cg(n) <f(n) foralln > ny}

As the value of n approaches infinity, f{n) becomes very
large as compared to g(n).

Mathematically,

lim f(n)/g(n)=w
N0
Example : Let us try to understand this with the help
of examples
In+t5=aw(l),as3In+5=Q(n)
10n* +7 = w(n), as 10n* + 7 = Qfn?)
If we write 3n + 5 = @(n), it would be an incorrect
bound as

==|ﬁ2:?.m?v #w

Lé =__..H=SG=+€_._uun8

So, f(n)=3n+5=w(n)
Whereas, for 3n + 5 = w(1),
lim (3n+5)/1=w
n—-x
Thus the above little omega notation for the function

3n+5 is correct.

Graphic examples of the 6,0 and Q notations. In
each part, the value of ny shown is the minimum possible
value; any greater value would also work.

(a) 6-notation bounds a function to within constant
factors. We write f(n)=0(g(n))if there exist positive

constants ny,c,, and ¢, such that to the right of n,, the value of
f{n) always lies between c,g(n) and c,g(n) inclusive.

fin)=6(g(n))

Fig.

(b) O-notation gives an upper bound for a function to
within a constant factor. We write fin)=0(g(n)) if there are
positive constants ng and c such that to the right of ng, the
value of f{n) always lies on or below cg(n).

cg(n)

fin)

fln=0(g(n))

Fig.
(¢) Q-notation gives a lower bound for a function to
within a constant factor. We write f(n) =Q(g(n)) if there are

positive constants ng and ¢ such that to the right of ny, the
value of f(n) always lies on or above cg(n).

—{ggun.rvs-m.)as.wpmm
81
S 8
Cpy=8,+8,-8,+85

=]
1z 5 2]

B
AT 3
Thus, the final solution is
1 0 2 i 0 1

017 [5 4 7 3
411012104 a5 09
0t 30201181 34
502 1){1 350 [587 7

Q.19 Give asymptotic upper bound aor lower bound on
each of the following recurrences. Assume that T(n)
is constant and make your bound as tight as possible,
Justify your answer (any four). '
() T(n)=3T(n2) +n log n
(i) T(n) =S5T(n/5) + nn log n

3
(iii) T(n) = 4T(n/2) + n* Vo \\)‘\qs\d&

(iv) T(n) =3r(§+s}+uz

) T(m)=T(n-2)+2 log n [RTU. 20111

Ans.(i) Comparing given recurrence with the standard
recurrence relation uséd in Master’s theorem, we get
a=3,b=2,fln)=nlogn

nlogs _ plesl _ n07298

Since, order of f{n) can not be directly expressed asa
polynomial, we consider ,

fln) = Q(n o) , for which

log;? =0.7298

where e 1y 0.2

So case 3 of Master theorem applies.

Performing the regulatory check, one extra condition
should be satisfied. a.f(n/b) < ¢.f{n), for some constantc < 1.
If3f(n/2)<enlogn

- 3.3103(%) <cnlogn

loggn~1 _
\/ T(n) =n8(l)+n sz (n/(log(n/S1y)

(Analysts of Algoriims)

cfln)<cn logn

3
where, ¢ ==
e, ¢ ==

T(n)= 6(f(n)) = 6(n log n)
(ii) We have

a=5,b=5, f{n) =n/nlogn
So, ks =logs5=n

- : AATS
We h
For large values of n, G) nlogn<ecn log n or o aen Mot theorée s 4 s)
f(n)=8(n""= Iog“n) =B(n‘°': log** n]
fork=0
From this theorema =4, b =2, f(n) = n? log n
Thus, the solution to the recurrence relation is So, plost =n?
Since f(n) = 8(n? log n)
T(n) =6(n?log?n)
p T(n) =3T[P— +5J+ﬂ Anps.
3 2

None of the Master theorem cases may be applied .
here, since f(n) is neither polynomially bigger or smaller than

n and is not equal to 8(nlogk) for any k > 0. Therefore, we

solve this problem by algebraic expression.
T(n) =5T(n/5)+n/nlogn
=5(5T/n/25) + (/5)(log(n/5)) + n/n log n
=25T(n/25) + n/log n(n/5) + n/n log(n)

i-1 :
- Sl-r(mrsl) g En /nlog(nlS’)
i

When i = loggn the first term reduced to Slog,” T(l),
so we have

=

loggn-1
= 9(n)+nogz (1/logn-(i-Dlog, 5)
=1

) logsn-1
=8(n)+n(1/log;5) ¥ (/(logsn—(j-1)
=l

log,n 1
=6(n)+nlogs2 (;]

i=2 .
This is the harmonic sum, so, we have
T(n) =6(n) + C;n £n (loggn) + 8(1) = 6(n log n).
(i) Tm)= 4T(§) +n*Vh

Jn =logn_

(iv) For T(n) = O(n log n)
We have to show that for some constant ¢
T(n)<cnlogn

T(n')scg(1;-+s)log(§+5]+%

o n
=cnlog| — |+10+—
mg(sj +2

=cnlogn—cnlog3+10+%

=cnlogn —cn+10+%

=cnlogn—(c—1/2)n+10
=cnlogn-b<cnlogn
ifc2 1, bis constant
Thus, T(n) =6(n log n) Anms.
(v) We solve this problem by algebraic subsitution
T(n) =T(n-2)+2logn
=T(n-2)+2logn

=0(1) + zlogi

1==1

=6(1)+ log []‘[1]

=l
=08(1) + log (n!)
=8(nlogn) Ans,

aao

]

1at
en

ng
lso
TS

—{B.Tech. (V Sem.) C.S. Solved Papers

(Analysts af Algorithms). ' .

from the Kruskal algorithm only in the way of selecting the
next safe.edge which does not produce cycle upon adding
The running time of Prim’s algorithm is essentially same a:
Krusl_cal‘s algorithm O(V + E) log V. The importance of Prim:
algorithm is th_at at loops it is very similar to an algorithm whict
is known as Dijkstras algorithm, used for finding shortest paths

ARS QUESTIONS

gz2all

{R.TU. 2018, 2014)

Ans. The chain (4,10, 4, 40, 5) means the matrices to be
multiplied are of following dimensions.
m, (4% 10),m,: (10 x4), m,:(4x40),m,: (40 x 5)
All A[i][i] = 0 [base value]
Thus, A, =0,A,=0,A,,=0,A,=0

' Z'E\ 0)
ParT-B # _3(4
)

:E.s jmd_lg_g _optimal parenthesization g@_@_—mj‘h
product whose sequence of dimension is (4, 10,4,
“ '.SJ-.- —_— ————— -—— ———r
=

A, =min[A, + operations (m , m,), A,, + operations
(m, m,)}]
= min[800 + (4 x 40 x 5), 1000 + (4 x 10 x 5)]
=min[1600, 1200]

=1200

4 3 2 1
1] 1200 [800 <160 | 0 |
2 {10 1600 | 0
3 | 800 0
4 |0

(m,, m,) = ((m,, m,} m,) '
= (m,, m,) = ((m, m,) m,)m,)

‘ Solve the following instance of LCS problem through
dynamic programming T :

x = ABCDCDBCAD
y = BACCDCABBD

Ans. In our problem
X= ABCDCDBCAD
Y= BACCDCABBD

[R.TU. 2018, 2015 |'

110 XD |Bep i X, ="1" equal to Y'Y
10 | V)=D | b{10,10] =T aud ¢|10, 10) = 6 1=7 !
, Boo lins mumber 10ead 1] T
'
i B B-L'F
0 o] 0 0 0 0
IAO I I IR I I eI
2 B o Tt] 2] ~2]+2
3 co] n2le2] n2]e2] 2] T2] T2
4 Do | T2] ~3] 3] 3] 3] «3] *3
s Co 11 1 n2]=3] T3] ~nd4] 4] « g il § g4
¢ D o[Tl Tal Tol <4l Tal T4 T4l T4l =3
v B oA T[Tl Ty Al T4] ~31 = 3
s ColTifTi~af~3] Ta[nsT—s] Ts1 Ts] T3
9 AofTif=2] Ta] T3] T4] T5Q"6 6]
10 D o[T T2l T2] 1a] ~4] Ts] 16 6] Tef =7

Q.7 Explain and write an algorithm for greedy method
of algorithm design. Given 10 activitles along with
their start and finish time as
S={ApApAp Ay Ay Ay Ap Ay Ay Ayl
Si=1{l1,2347282929 11,12
Fi={3,54,7 10,09, 11, 13, 12, 14}

Compute a schedule where the largest number of
activities take place. JR.T.U. 2017}

—————*—'—"_____._._—'_-_'———_———-—-_'—_-"

Ans. A greedy algorithm always makes the choice that seems

to be best at that moment. This means that is makes a locally

j " 5 5 , So the process is like this : optimal choice in the hope that this choice will lead to globally
" 1 160 0 | micm LCS-LENGTH(X, Y) optimal solution.

2 1600 5 = 1 m=length[X] s In many problems, a greedy strategy does not in general
= l" 2 n=length[Y] ’ procedure an optimal solution, but nt?nethelcn a greedy
g 3 L0 0 . heuristic may yield locally optimal solution that approximate

4 0 3 fori=]1am a global optimal solution in reasonable time.

— A, = operations (m, m,) =4 x 10 x 4 = 160 4 docfi, 0]=0 When we have to decide which choice is optimal, we
n Alz = operations (m' m:) =10 = 4 » 40 = 1600 5 forj=1ton assume that we have an objective functiqn that needs to be
i o (mz m)) 800 6 doc[0,j]=0 optimized at a given point. A greedy algorithm makes greedy
* T 7 fori=ltom choice at each step to ensure that the objective function is
4 3 2 ! . optimized. The greedy algorithm has only one show to
. 1 800 <160 | 0 | 8 doforj=1ton compute the optimal solution so that it never goes back and
3 2 | 1000 | 1600 0 9 doif X; ==Y . reverses the decision. .
3 | sdo 0 10 ~ thencfi,j]=c[i-1,j-11%1 For the given example, the greedy choice is to always
4 0) b[i, j] = ARROW_CORNER pick the next activity whose ﬁmsl} tin'!e is least among the
= ' _ . 2 else if cfi— 1, j]>=clij—1] remaining activities and the start time is more than or equal
A,, = min[A,, + operations (m,, m,), A,, + operations 2 ; to the finish time of previously selected activity. We can sort
= | (m, my)] 3 then cfi, j}=c{*1,J] the activities according to their finishing time so we always
. =min[160 + (4 x 4 x 40), 1600 + (4 x 10 x 40)] 14 bfi, j] = ARROW_UP consider the next activity as minimum finishing time activity.
. = [800, 3200) = 800 15 else cfi, j]=c[i,j— 1] S={A;,Ap Ay Ay Ag Ag Ag Ay Ag Arol
i A,,=min [A,, + operations (m,, m,), A,, + operations 16 ~ b[i,j]=ARROW_LEFT $,={1,2,3,4,7,8,9,9, 11,12}
[(e) 17 retuncandb : ‘ F,=(3,5,4,7,10,9,11,13,12, 14}
=min[1600 + (10 x 40 x 5), 800+ (10 x 4 x 5)] « [ABCDCDBCAD Sorting according to F;
=min [3600 Input \ . A, Ag Ay A
e S Input Y [BACCDCABBD 5= {AuAsAzAv Ao hs ArAnAs Aul

—{B.Tech. (V Sem.) C.S. Solved Papers |
mlz = m” + mu + de]dz

y- e m12=0+0+15X10X20
al =3000
't Wheni=|

Ma3 =My, +My; +d,dyd,

Wheni=2

=0+0+10%x20x25

= 5000
: Similarly, we find the value for whole table of M
x
6/
.
e

A, A, A
l‘jl.. General structure of table
a Now, we will calculate min m form,,
: M3 =My +my +dyd,d,
L =0+5000 + (15x10x25)

: =8750
: At each stage of parenthesization v, calculate the
a | Minimum scalar multiplication and is added to obtain the find
. matrix value. .

e N PO

.

-

- [RTU. 2015)

—_———————————
Ans. Greedy method to solve optimal merge pattern problem:
Step 1 : Sort the files in increasing order of length.

Step 2 : Merge first two files, replace them with resultant
file in list.

Step 3 : Repeat from step/till list has only one file.

Step 4 : Exit.

Given:5,4,7,2,9,11,4,8.

Step 1: Sortingarray:2,4,4,5,7,8,9, 11
Mu'geﬁmtwo:2+4-6,4,5,7,8,9, 11
Step 2 : Sortingarray:4,5,6,7,8,9, 11 |

, Moﬁmtwo:9,§‘,7,8,9,ll

‘ onsider a knapsack of capacity 10 and items prices
as (40, 30, 20, 50) ané weight (5, 4, 6, 3). What is

Eﬂnalysls of Algorithms j=

Step 3 : Sortingarray :6,7,8,9,9, 11
Merge firsttwo : 13,8,9,9, 11
Step 4 : Sortingarray:8,9,9,11,13
Merge firsttwo : 17,9, 11, 13
Step 5 ¢ Sortingarray:9,11,13, 17
Merge first two : 20, 13, 17
Step 6 : Sortingarray : 13, 17,20
Merge first two : 30, 20
Merge the Last two : 50 -

Total no. of operations : 6 +9+ 13+ 17+20+ 30+ 50
=145

Lo ™

the maximum profit that can be earned if fractional
items are allowed,

[R.TU. 2015]
Ans. v=(40,30,20,50)
w=(5,4,6,3)
Capacity = 10
Number of items, n = 4
Initializing, x= {0, 0,0, 0,}, Profit=0
o[\—7

w;
- ={8,7.5,3.33, 16.66}
Arranging in descending order: ™/
s={16.66, 8,7.5,3.3)

According v = {20, 40, 30, 50}

s=ii__{4° 30 20 so}

w= {6, S’ 4! 3}
ori=|,check wlij<=M
6 <=10 yes.

x[i]=1,M=M-w[i]=10-6=4
fori=2,w[2]<=M

5<=4,no.

Iteration stops

Check, isi<=n,
2<=4,yes

._ M _ 3
x[i] = w[i]_S 0.8
M=0

Hence, vector is 1, 0.8, 0, 0]
Total profit=20x1+40x0.8+0+0
=20+32=52

s

—

Q.11 Compare dynamic programming and divide and

conquer approach. [R.T.U. 2015]
OR

What is the difference between divide and conquer

and dynamic programming method? Explain with

example. IR.T.U. 2014}

R

e

Ans. |
progre
|

sub-pi
combi

proble
is stor
inata
for fu
obtair
sub-pi

2.

of eac
sub-p.
one.
sub-pi
3.
and hq
the su

searcl
multif
Exan
merg
halve
merg
array

in an;
overl

exam
rathe

by th
1. Ir
the p
we |
Furtl
agail
prob
look

Q.11

(AA24)-

(Analysis of Algorithms }—

_ _

At each step, we try to get maximum profit. The
maximum profit we get by

(iv) x,=1, x,= 173, x;=1, x,=1, x,= 1. These fractions of
weight provide maximum E.o? »

(@17 Trace the Kruskab's atgorithm to obtain minimunm
spanning tree from the graph.

. [R.TU. 2011}

Aans. To obtain the minimum spanning tree form the
graph, steps are as _.o__na.u.

Step 1 : Edge with minimum weight is {1, 5}. So this &mo
can be added to set A.

!)

So, A=AU({L,5)
Thus, at this step updated sets are

{1,5}, {2}, {3}, {4}, {6}, {7}, {8}
Step 2 : Next edge with minimum weight is {4, 7}

10
()

A=AuU {4,7)

4

{B.Tech. (Vv Sem.) C.S. Solved Papers)
Thus, at this step updated sets are
{(1,5), (4,7, (2).(3), (6). (8)}
Step 3 : Next edge with minimum weight is {5, 7}

So, A=AU {57}

Thus, at this step updated sets are :
{(1,5),(4,7),(5,7),(2), (3), (6), (8)}

So, this can also be written as

{(1,5,7,4), (2), (3), (6), (8)} because their
addition does not form a cycle

Step 4 : Next edge with minimum weight is {5, 6}

So, A=AU(56)
Thus, at this step updated sets are :
{(1,5), (4,7),(5,7), (5,6),(2),(3),(8)}
Step5: Zeﬁ edge with minimum weight is {2, 3}
: N\ 25

So, A=AuU {2, 3}
Thus, at this step updated sets are :

{(1,5),(4,7),(5, 7). (5, 6), (2,3), (8)}
m?-.a Next edge with minimum weight is {6, 8}

(&)
30

So, A=Au (6, 8}
Thus, at this step updated sets are :
{(1,5),(4,7),(5,7), (5, 6), (2, 3), (6, 8)}
Step 7 : Next edge with minimum weight is {5, 4} but adding
it will form a cycle so cant be added. Next edge (5, 3} which
can be added without forming a cycle.

@3 @

.80, TA=AV(53)

Thus, at this step updated sets are

((1,5), (4, 7),(5.7),(5,6),(2,3). (6, 8), (

Adding all other edges namely, {2, 6}, [7, #] and
{2, 1} will result in cycle formation hence not added to set A

So, the tree obtained is a minimum spanning free

T w(m)

t<m._.
=5+25+40+20+30 +
=145

Minimum Cost =

_u+5

Q.18 Illustrate the operation of heap on following array:
A=<513,2 25 7, 17, 20, 8, 4>'[RTU. 2011

Ans. Creation of a Maximum heap
(i) First element is 5, take it as root.

®

(ii) Next element is 13. Make it as left child of root node and
compare that whether the element inserted is smaller than
the parent node or not, then this element should be shifted
with thé parent node.

Since 13> 5
——
After shifting

(iii) Next element is 2

(13
®» @

(iv) Next element is 25.

o Q 25>5) @ e .~uv_u

w—:E:u m..:E:w

(vii)

B

(viii

(1x)1

{B.Tech. (V S8em.] C.8. Solved Papers
Next iteration, exchange node 1 with node 4.

B e B
ofie O e

ﬂiﬂ::m_is_g_u

Next iteration, exchange node 1 with node 3

Heapify

—_————

(L) (2)
l4l2]s]7]8]13]17]20]25

In the last iteration, node 1 is exchanged with node2
It is now included in sorted array. We do not need any iteratior
for last node since it is already in its sorted position.

121 41 s 721 8] 13] 17] 2 [Fas

=<a.a b,a b> Y=<b,a b, b> IfZ is af LC
of X and Y, then find Z using dyn [
programming. [R.T.U. 2011,

Ans. Here X =<a a;b,a,b>and Y =<b, a, b, b>
m = length (X) and n = length (Y)
m=5n=4
Now, filling in the m * n table with the value of c[i, j.
and the appropriate arrow for the value of b(i, j]. Initializc
top row and left column to 0.
Work across the row starting at the row] and columr
from 1 till end.
For every box, check x, = y,
e Ifyes, then fill in the value equal to diagonal neighbou
value + | and mark the box with the arrow % =
e If no, then compare values in the box above and the
box to the left and fill in the box with the maximum
Put arrows according to from where the value it
derived. If c[i - 1,j] 2 [i, j - 1] then bfi, j] entry is “T’

otherwise “«"”

Here
X =a y;=b
X, =2 y;=a
X3=b y;=b
=2 Y=b
xs=b

Now, fill the value of c[i, j] inm = n table,
fori=1to05,¢[i,0]=0
forj=0to4,c[0,j]=0

o e e

(Analysis of Algorithms)

Thatis
0 1 2 3 4
i J v b a b b
0 % 0 0 0 0 0
1 a 0
2 a 0
3 b 0
4 a 0
5 b 0

Now, fori=1andj = 1, we check x; and y,, we get
X, 2y ieazb _
and cfi-1,j]=[0,1]=0
cli,j—1]1=[1,0]=0
Thatis c[i-1,j] =c[i,j—1]=0andb[1, 1]“T"
Now, i=landj=2
Check x, and y,, we get.x, =y,
cli-1,j]=01-1,2]+1
=0+1=1
c[1,2] =1,b[1,4] "~ "
Similarly we fill all values of c[i, j] and finally we get,

0 1 2 3 4

»n b [b - b
0 X y. 0 /] 0
1 s 0 LN -l «l
2 ' , 0 «0 « 1 1
3 b 0 LN 11 13
4 5 0 T "2 -3
5 b 0 2 12 N3

The entry 4 in c [S, 4] is the length of the Z. and the final
output of Z is
Z=<a,b, b>

Imum spanning tree of the following graph
using Prim’s and Kruskal's method.

[REU. 2010, Rej. Unin. 2006,2004]
i

(AA27)

Ans, Kruskal’s Method : Minimum spanning tree using
Kruskal's method : :

Edge is selected in such a manner that it contains a

minimum weight and adding to ‘M’ does not includes any
cycle.

n O——=0

@ O——0——=0
6 O—1—0a@——0
3
G—70 :
3
@
>——=0

(5) We will not add next 4 weight edge 2 to 5 to ‘M’
because by adding this will get the closed paths.

(6) We will not add § weight edge Sto 3 10 ‘M.

(7) We will not add 6 weight edge 410 210 *M’.

(8) So as above we will not add 6, 7 and 8 weight edges
to ‘M’

Prim’s Method : iunpnmg%v&npaa&
the edge to ‘M’ which is having the least weight among the
&nﬂgis?_g.igizna_ao-&om&

 ————————————————————————————————

path.

‘Sﬂ_"
yi

What is Dynamic programming? How it gives the
optimal solution?

Consider n = 3, consider M = 6, (wl, w2, §3)
=(233) ﬁ\-
eh- \Nw ‘-ﬂ\ - \th,.ﬁ.w

optimal solution given knapsack problem.
7 # ‘ \a.. [R.TU. 2016]
S - OR

~(B.Tech. (V Sem.) C.S. Solved Papers)
What is dynamic programming ? How it gives
optimal solutions? [R.T.U. 2018/
OR
Discuss Knapsack problem with respect to dynamic
programming approach. Find optimal solution for
given problem, w(weight set)=(5, 10, 15, 20} and
size of knapsack is 8. [R.T.U. 2017]
OR
Consider n = 3. (w;, wp w3 =(2, 3, 3), (pp P» Py
= (1, 2, 4) and m = 6. Find optimal solution for
given data.) [R.T.U. 2011}
e . ——————
Ans. Dynamic programming : Dynamic programming is
an algorithm design method that can be used when the solution
to a problem can be viewed as the result of a sequence of
decisions.

Dynamic programming is the most powerful design
technique for optimization problems. The solutions for the
dynamic programming are based on multistage optimizing
decisions, on a few common elements.

Dynamic programming is closely related to divide and
conquer technique, where the problem breaks down into smaller
subproblems and each subproblem is solved recursively. The
dynamic programming differs from divide and conquer in a
way that instead of solving subproblem recursively, it solves
each of the subproblem only once and stores the solution to
the subproblems in a table. Later on, the solution to the main
problem is obtained by these subproblem’s solutions.
Optimal Solution for knapsack problem : For m = 6 and
n =3, table will contain n rows and w columns.
iwill vary fromto l ton
w will vary from 1 tom

Step 1.
1 3 4 s 6

i g
. ... T

c[0,w] <0 forw=1tom
c[i,0] «0 fori=lton
Step 2. For i = 1, check for each value of w
Forw=1,w =2andw,>W
So, cfl, 1]=cli—1,w]=c[0,w]=0
Forw=2,w,=2
and w=w,w-w, =0
Check if v, +¢[0,0]>¢[0,2]
Or 1+40>0
So, c[l,2]=v,+c[0,0]=1
Forw=3,w,<w,w-w, =0

v, +c[0,1]>¢ [0,3]

1+0>0

WO - o

. S ~

T AT

P

To:n__w.uﬂn of Algorithms jee— AAZS
So, c[l.3]=v,+c[0.1]=1 w»nva.ﬂo_;uwnrnnr:;n-n_._.-_:ni.s
mo_.sh...s_AL‘faus_uu Forw=1,w,=3and w,>w)
So, c[l.4]=v,+c[0.2] So, c[h1]=cli-l,w]=c[2.1]=0

=1+0=1 Forw=2, w,>W
For w=5w, <w.w-w =3 So, c(dh2=cli-1.wl=c[22]=1
So. nj.w_df.‘n—o.wu —nO_.;Hucs..\.Sm.:&ffws.UO

= | £0= 4.4,0__1_.«,-;.«_\«.“_7_.5_
For we=6,.m, < W, =4 o vtc[lwow]l>e[2w
So, «c[1.6]=v,+¢l0.4] or 4+c[2,0]>[2,3]

ol v . " or 4+0>2
So. the updated table for row i = | is So. c¢[33]=v,+¢(2.0]
Yoo 1 2 3 4 s 6 =4+0=4
o VB VR o A o RSy eua= vp= g

Y 7y I%M\\I v, te[2, w-w]>c[2, W]

. v T, T, il
. . | v aieeenn

tep 3. For i = 2 check for each value of w : =4+0=4 -

s _..mm.o_.én_,iuuu.snvi.ili.n..u 1o_.ium‘¢<uA£u=nE|s._:~
So, c[2,1]=¢c[l,1]1=0 v, +c 2, w-w]>c[2,w]
Forw=2,w,=3, w,>w,w-w;=—1 or 4+c[2,2]>¢c[2.5]

So, ¢[2,2]=c[l,2]=1 or 4+1>3
Forw=3, w,=w,w-w,=0 So, cf[3,5]=v,+c(2,2]
vrefi-l,w-w]>c[i-1,w] =4+1=5
or 2+c[1;0]1>c[1,3) Forw=6,w,<wand w—w,=3
2+0>1 <_+nmm.s.|EUHVnHM.t_
So, ¢[2.3]=v,+c[L,0] o 4+c[2,3]>¢c26]
=& or 4+2>3
mo_.su..riuhimbni|iuu_ So, nﬁu.mun<u+nﬁ.uu
virell 1]>c(1.4)
or 2+0>1 .
So, c[24]=v,+c[l,1] H:n_._tauans_u_no?m
=2+0=2 : 0 1 2 3 s s ms
SR edmeriipie B B - A VA, ° Vi

v;+cll,2]>c(l, 3]
or 2+1>1
So, ¢f2,5]=v,tc(L,2]
=2+1=3
Forw=6,w,<wand w-w,=3
v,te[1.3]1>¢[) 6]
or 2+1>1
So, c[2,6]=v,+c[l,3]
=2+1=3
So, the updated table for row i=2is

W

KN/ S/

[

. VB, - O, > o, VA
s |V O« Yk
Step 5. After computing the table, all we need to do is find
out the optimal solutions ie., the items to be put into knapsack
Check starting from [3, 6]
¢ [3.6]=c[2. 6] so, item 3 is part of Knapsack
Now check forc [i— I, w—-w], ie,
c[2,6-worc(2,3]
we can see that ¢ [2,3] = ¢ [1, 3]
So item 2 is part of Knapsack
Now, w=w-w,=3-3=0
So, w=0andi=i-1=0
Thus, w =0 and i = 0 and algorithm eads.
Finally we have item 2 and 3 in'the Knapsack with
value =2+ 4 = 6. This is an optimal solution.

Optimal Solution : Given weights and values of n items,we
put these items in a knapsack of capacity w to get maximum
total values in knapsack.

Ex. Value [] = {60, 100, 120}

Weight []= {10, 20, 30}

w =50 |

w = 10, value = 60

w =20, value = 100

w = 30, value = 120 :

w = (20 + 10), value = (60 + 100) = 160

w = (30 + 10), value = (120 + 60) = 180

w = (30 + 20), value = (100 + 120) = 220

w=(10+20+30)>50

Solution=2 <(

In the given problem, only weight array is given, not
value array, so we cannot solve the given knapsack problem.

\

cities in
only once
1e started,
o) Where
to n:w...n o
te starting
‘minimum

(Analysis of Algorithms)

{B.Tech. (v Sem.) C.S. Solved Paper

¢ The method is repeated until all the cities are visit
and at every step we have to select the city with the minimu
weight.

9 22 e

Graph G, vertices refer to cities,
edges refer to links berween
cities and weights refer to

cost of the links.

Graph G, selution to travelling

sales person problem according "
. lo greedy strategy. Dark lines

are showing the path. a

s YEARS QUESTIONS

|

n’ cities in
only once
he started,

Q5 What do you mean by bad character heuristic.

Ans. As the name suggests it concentrates on the. “b:
character” in the text where the mismatch has occurred.
that character is not contained in P, then the pattern is shift
after “bad character” in the string for further matching. B
if the “bad character” is somewhere in the pattern then 1
search for the right most appearance of the “bad characte

in the pattern and match it against the text.

2= {0, 1, ...9} thus, each character is a decimal digit. Our
process start with the calculation of decimal value for the
pattern and the sub string of given text.

For the given pattern P [1...m], p denotes the decimal
value and for the given test T [1...n], t, denotes the decimal
value for length m substring T [S + 1... S + m] where,
0<S<n-m

For the given pattern, S is valid shift if and only if
p = t, which means,

P[l...m]=T[S+1...S+m]

P is commuted time 8 (m) and t values are computed in
time 8 (n—m + 1), So we compare p with each value of t and
‘determine valid shift s in time [0 (m)+ 8 (n—m + 1)] =0 (n).

p is calculated using Horner’s rule as:

“¢ p=P[m]+ 10(P[m - 1] + 10 (P[m ~ 2] + ... 10(P[2]
+10P[I]....) :

Similarly, t,, | is computed usingt as: .

t,, = 10(t, - 10 T[S+ 1)+ T[S+m+1]°
ty ., calculation shifts the pattern by ‘one digit.

Subtracting the term 10™'T [S + 1] removes the higher
order digit from t, and multiplying it by 10, shifts it one position
towards left. Adding the term T [S + m + 1] brings lower
' order digit to the number.

Pattern P =<3, 1,4, 1, 5>

So, m =length [P]=5

We haveto check if T[S+1.....S+m]=P[l....m]
) Where,0<S<n-m

~(AA43)

dtlal s[2]eT73 913 2 1]

=1t,=(10(35902 -3 x 10000) + 3) mod 13

ForS =2,t,
=59023 mod 13
=3=7
Pattern unmatched and shift is applied.
Step 4

BRI BEEE

For S8 =3,t, =t,=(10(59023-5 x 10000)+ 1) mod 13
=90231 mod 13 v
=117
Pattern unmatched and shift is applied. .
Step 5 - .

1]sj2]6]7[3]9]9]2T1]

ForS =4,t,, =t,=(10(90231 -9 x 10000) + 4) mod 13

=2314mod 13
=0=7
Pattern unmatched and shift is applied,
Step 6
M.J-HH—HE G s1216] 713155 2]1]

Step 1
T B L EETE e eTetT | Fors=5 %, =4 = (1023140 x 10000) + 1) med 13
. ParT-B §= =23141 mod 13
P ‘ =1=7)
p=Pandq=31415mod 13=7 Pattern unmatched and shift is applied.
e, :.M.G Using Rabin Karp algorithm to solve rhe fe For, §=0,t, =? Step 7
B S [NK T = 2359023141526739921 and P = 31415 a There is no shift initially so, , TR
i i module g = 13, s % [R.T.U.2013, 20) t,=23590 mod 13 T ETE
P OR =827 .
Given the text T={2,3,5,9,0,2, 3, 1,4, 1, 5, 2, So, pattern unmatched and shift is applied. ForS =6,t;, , =t =(10(23141 -2 x 10000) + 5) mod 13
er Moore 7,3,9 09 2 1}and P= {3, 1, 4, 1, 5} and modu Step 2 . =31415mod 13 4
q = 13, m = 5. Choose the pattern matching wi T (2 DR 5 1 T[4 (52 [17 31919121 1] =7
= average case complexity and explain the sear : S=| Here, P=1
: pattern is process. Justify the answer for choosing suc P e Pattern matched will shift S = 6.
-l algorithm. IR.T.U. 201 ty,, = (d(t,~ T[S+ 1]h) + T[S +m + 1]y mod | Step 8
i OR 13 ' This is done till $ =n —m = 19 - 5 = 14. If any other
ithm. Explain Rabin Karp method with suitable exampl T[S + 1] is higher-order digit for older T[S + 1]and T match mm found, it is also a pattern match. In this, the only
Also give the algorithm for the same. [S +m + 1] is the new lower-order digit. \ pattern is at S = 6.)
[R.T.U. 201 h = 10000 for this example. . e e T
searching : o = 1,1, =t = (10(23590 — 2 x 10000) + 2) mod 13\ and writg Knuth Morris Pratt algorithm for
Ans. The Rabin Karp algorithm involves both the steps $onfor 8= bl |.,_o uA VE ’ i A pattern maiching and also comiment OR"its running
bet of the | pattern matching, i.e., preprocessing and matching. For bett .) time. [RTU. 2017
L explanation, we assume that string character conta So, pattern unmatched and shift is applied.
1+ Kkn .b . ? - ﬁ

©

T a - ol e B

s

OR 4

Write the KMP string matching algorithm and also
Jfind the prefix function for the following pattern: a
babbabaaandimplement the algorithm for one
step. [R.TU. 2013}

Ans. Knuth-Morris-Pratt-Algorithm : In Brute-Force-
Algorithm, we have to backup the text pointer for every
mismatch. Some characters are examined twice or thrice
depending upon the shifts for the given pattern. The finite
automata is used to eliminate the needless shifts, but the
complicated preprocessing for the computation of transition
function pays off. The working of KMP algorithm is similar
to the finite automaton matches; in this, pattern string P, and

_text string T both are scanned from left to right, and are

compared. If any mismatch occurs then the algorithm
searches the largest suffix of the “wrong start” which is also
a prefix of a pattern P. Thus, it determines the shifting of the
pattern P for possible match. ,

The KMP algorithm has a linear running time of O(n+ m),
which is achieved by using the auxiliary function Pf{prefix
function), pre-processed from the pattern P in time O(m).
The function P computes the shifting of pattern matches within
itself. It can be observed that if we know that how the pattern
matches shifts against itself, then we can slide the pattem
more characters towards right than just one character as we
have seen in the Brute-Force algorithm.

KMP MATCHER (T, P)

1.n « length [T]

2.m « length [P]

3. 7« COMPUTE-PREFIX-FUNCTION(P)

4.9 «0. » Number of characters matched.
5.fori « 1ton p Scan the text from left to right
6. do-while g > 0 and P[q +1] « T[i]

7.do q « n[q] » Next character does not match. |
8.if P[q+1]="T{i]
9.thenq« g+ 1 p Next character matcher
10.ifqg=m p Is all of P matched ?
11. then print “Pattern occurs with shift” i - m

. 12.q « nlq] » Look for the next match.

For instance : If for a given pattern P, a mismatch js
detected at some position j then we know that we have already
matched j — 1 characters successfully. By this idea we can
decide the possible shifts, so that we can restart our matching.

Consider the string “10100” which is mismatched at s
character, then we already know that the text so far matched
nsists of “1010X”, where X is not known. Thus, we can
it matching at the 3 character which is ‘1” against the

vl character ‘X’.

manner.

Given a pattern string P, each string position j can be pri
processed. Thus, a position can be obtained from where 1
restart the matching when a mismatch occurs immediatel
after h.n_ position. It can be accomplished in the followin

¢ From the original string consider a substring 0..].

» Starting at the end of the substring, “slide” it along tt
original string.
o ¥ E.o have a potential restart position for a mismatch aft
17 position, where all overlapping character matches.

* Take an auxiliary array - “next”, and store that large
potential restart position for j.

i 112131456 7]18]9
Pi) | a|bla|b|{blaf[blala

Step 1. m « length [P]

ie.,length [P]=9,s50m=9
Step2. =n[l]«Oandalsok « 0
Step 3. Forq«2tom,ie,qe2to%andnowq=2
Step 4. dowhilek>0andP [k+1]#P [q], e,

0>0andP[1]#P [2] (falst
Step 5. It will not execute.
Step 6. IfP[k+1]=P][q],ie,P[1]=P[2] (false
Step 7. It will not execute
Step 8. =[q) < k,ie,n[2]« 0
Again Step 3. Now q =3
Stepd4. 0>0andP[1]=P[3] . o (false
Step 6. IfP[1]=P(3] (true
Step 7. thenk«k+1,ie, k1 "
Step 8. n[3]«1
Again Step 3. Now q=4
Step4. 1>0andP[2]#P [4] - (false
Step 6. IfP [2]=P [4] ‘(true
Step 7. thenkek+1,ie,ke2
Step8. nf4] <2
Again Step 3. Nowq =15
Step4. 2>0andP [3]=P[5] (true
Step 5. thenk« 0
Step 8. n[5]« 0
Again Step 3. Now q=6
Step4. 0>0andP [1]=P [6] (false
Step 6. IfP[1]1=P[6] (true
Step 7. thenkek+1,ie, ke
Step 8. n[6]« |
Again Step 3. Now q=7
Stepd. 1>0andP[2)#P[7) (false
Step 6. IfP[2]=P[7] (true
Step 7. thenk e« k+ 1, ie,ke2
Step 8. n[7)«2
Again Step 3. Now q=8
Step4. 2>0andP[3] =P [8] (false
Step 6. 1fP[3]=P[8) (true
Step 7. thenk <« k+1,ie,ke3
Step8. n[8]«3 i

?an_:ln of Algorithms |

Again Step 3. Now q =9

Step 4. 3>0and P [4] =P [9] {tru
Step 5. thenk « |
Step 8. 7 [9] « 1
Thus, the final table is
i i [2]3[4a[5]6[7]8]9
P(i) | a|b|la|[b|b|a|b|a]|a]
a@i) (O[O 1 [2f0 1]2]3]1]

Running Time : The algorithm compute_prefix_function
has running time of 8(m). The matching time for KMP-
matcher is 6(n).

!

Q8 Let p = rrilrrll be a pattern and
T = Irrrierllirrrierirriirirrieelr be a text in a string
matching problem :
(i) How many shifis (both valid and invalid) will
be made by the Naive string matching algorithm?
(ii) Provide the algorithm to compute the transition
function for a string matching automation.
(iii) Find out the state transition diagram for the
automation to.accept the pattern P given above.

[R.T.U. 2017}

l

Ans. p=rrlirrll

T =lrrrlerlllerrderdeediclerieric

(i) Total shift =T(n) - p(m)+1

=30-8+1

=23

Valid Shift=0

Inward Shift =23

(ii) The algorithm is to get the next state from the
current state for every possible character.

Given a character x and a state k, we can get the next
state by considering the string “patt [0 ... k—1]x" which is
basically concarnation of pattern characters patt[0], patt[1],

.., patt[k — 1] and the character x. The idea is to get larger
of the longest prefix of given pattern such that the prefix is

also suffix of “patt [0 ... k -1]x”. The value of length gives
us next length.

(iii)

Fig.

Aps.
< t{a
satis!

whic
salesi
a toul
spant
Appi

propo

©

Fig. :

illust
spann
hike {
tour,

vertu
from
miny
mini
of an

)

] C.5. Solved Papen (Analysis of Algorithms }=— A

m, x [k] is

1bered vertex 2 D
nx[1:k-1] Part-C B

x [k-1].

tn in addition

n+ 1); // Next verte
5
| then

= x [k]) then break

nctness
ex is distinct.

1= 0)

Cycles
rmulation
Itonian
red as an

rcles begin

«t value to

¢ Hamiltonian

Solve the TSP problem having the following cost
matrix using branch and bound technique.

JR.T.U. 2018, 2011/
e
Ans. According to cost matrix

A BCD
AlX 5§ 2 3
Bj{4 X 2 3
Cl4 2 X 3
D|7 6 8 X

Subtract the minimum quantity from each row
RowA=RowA-2
Row B = Row B -2
RowC=Row C-2
RowD=Row D= 6

The reduced matrix is how

A B
Al 3
B|2 =
RC=¢l2 o
D1 0 2

Still column A and D do not have any zero. So, we
reduce them properly.

Column A=ColA- 1|
ColumnD=ColD-1
Hence, the reduced matrix is

o0 0

D
1
1
1
- +]

A B
Alw 3
Bl =
“cl1 oo
Di0 0
The lower bound is calculated as sum of all quantities
subtracted.
Lowerbound=2+2+2+6+1+1=14
The tree constructed for this problem will start a root

vertex of cost 14. The root node corresponds to the vertex
My :

RC

N8 o 0O
oo ol

@

We expand this node by computing path values from A
to B, C and D. .

Considering path A — B, we formulate a matrix FC
by setting row A and column B to infinity (). Also, entry
[B, A) = =, so that the path does not trace back to vertex A.

A BCD
Ajo o @ o
Blw @ 0 0
FC=¢cl1 w @ 0
D{0 © 2 o

In these matrices either a row or column should have
all values « or have -at least one zero. As we can see this
matrix is already reduced.

Total reduced quantity, r =0

Nodevalue, I =I,+r+RCI[A, B]

=14+0+0
=14

Now, we can also take path A — C, for which the
corresponding matrix will have row A and column C set to
o, And the entry [C, A] = o, so that the path does not trace
back to A.

A B CD
Ajl® @ w o
Bjl © o 0
T —
D[0 0 © w

This matrix is also already reduced. Hence r=0
Nodevalue, 1c=1,+r+RC[A,C]
=14+0+0=14
Considering path A — D, we have a matrix with row
A and column D set to « and the entry [D, A] = o,

A BCD

Al © ®© o]
Bj|l © 0
Fe®ely 5 % »
Dle 0 2

Subtract | from column A.

A B CD

Al © o 8._
B|0 o 0 w

FC %o 0 o
Dlw 0 2 o

Total reduced quantity, =1

— — —

¢ € ¢ ¢ ¢ ¢ CcCc C cC ¢

000000

/J,(,(((hﬂn”!)

« € ¢ 7,

l, '1

2 2 2)

(BAS0)—

Zoﬂ_n..i_:? Ju_>+:zn__> -
=1d4+]+0 .
- 15

The tree looks like,

)
B~/ C D
ORORO

Choosing the minimum node to expand, we select n
B 2.. value 14. Upon expansion it will _nww to fol lowing unwn_un
d.r._:m pPath A - B — C we formulate the matrix FC by
setting row A, row B and column C to o, Also the entries
[C, A] and [C, B] are set to o Thus,

/ ABCOD e 7
Alw ®© = o \\\
|m8888

"FCZ¢l1 0 o 0
o @

D|0 0
That is already reduced so, r = 0
Nodevalue, Ic=Iy+r+RC[C,B]
=14+0+0=14
Taking path A — B — D, we formulate the matrix FC

by sefting row A, row B and column D to . Also the entries
[D, A] and [D, B] are set to .

A BCD

Ao @ =®

Bl|w ©® ® o

%t o w »

Dlw © 2 w

~ Subtract I from column A and 2 from column C

A BCD

Aflo © o o

Bl ® o© o

FC=clo 0 o =

Dlw ® 0 =

So, r=1+2=3

Nodevalue, Iy=Ig+r+RCIC,D]
=14+3+0=17

The tree now looks like,

D

1and, we select node
[to following paths.
: the matrix FC by
©, Also the entries

8 o8 8 O

C, B]
4

tlate the matrix FC
. Also the entries

column C

o 5 “ 388818 0O

o

~——(B.Tech. (v Sem.) C.S. Solved Papers

(Analysis of Algorithms j=

Since, there are no different paths now to explore we
have found the solution. The solution path is

A-B>Co5DoA,
unﬂ>.m_+oﬁw.2+nﬁnvu
1+C[D, A]
=5+2+3+7=17
Note that this is same as value of last node in tree,
where we found the solution.

Total path cost

ain Naive string matching al,
uitable — [R.TU. 2016)

algorithm in detail?
RTE 2018, 2012

ns. String matching algorithms are normally used in text
processing. This text processing is often done during
oo:.ﬁ:nno: of source program. In software design or in system
design, text processing is an important activity. String matching
means finding one or more of all the occurrences of a string
in the text. These occurrences are called as pattern. String
matching algorithms are also called as Pattern Maiching
Algorithms.

One of the pattern matching algorithm is Naive Merhod.

Naive Method : This is the simplest method which
works using Brute Force approach. The Brute Force is a
straight forward approach of solving the problem. This method
has “Just do it” approach. This algorithm performs checking
at all positions in the text between 0 to n—m, whether an
occurrence of the pattern starts there or not. Then after each
attempt, it shifts the pattern by exactly one position to the
right. If the match is found then it returns otherwise the
matching process is continued by shifting one character to
the right. If there is no match at all in the text for the given
pattern even then we have to do n comparisons. This method
can be explained with the help of some example,
Examplie

Consider the text and pattern as given below :

—

w;m@q-e_c:_u::;_o

6 1 2
E._ama_sh w.__*r_n_n— Ei_-—z_nm_._.ﬁ:

We will start finding match for pattern from 0* |ocation

in text. If the match is not found then shift 1o the right by
I position.

0 I 2 3 4 5 6 7 % 10 11 } 13 14 | 6
| BO00ROBANNEONN GG
H ..-w.n":.!?

i 1
oonn v e

3 45 6 7 8 9 1011 1213 14 15 16

2
Ea_-_zh ___m—rmn_-_ _Eh-_:uw_o~295-5=

$ 7 8 9 10 Il 1213 14 I5 16

.. 11 I Y P N Y P e

0 12 34°5 67 8 9 10111213 14 15 16
e .
Oooon oEnan _a_._n_._vJ.....mmr.qu.*a*
ﬂ by | pesition.

0 1 2 3 4 5 6 7 8 9 101 1213 14 15 16

(L T- BT T i [«o [+] mls =18 [o] Nomhfoua
%ﬂ.ﬂqj. 10 11 12 13 14 15 16 . .

__ T_r—e_-_ ﬂﬂ_—mn_u—q_z\.:llzg

0 1 2

2 3 4.5 6 7 8 9 10 II 1213 14 15 16

[AO00 NEO00E DN o PR

6 7 8 9 10 11 12 13 14 15 16

0 1 2 3 4 5 L
“-.m‘_-_n_ .m_rﬁn_n_ _5—-_:_u~o_20=ﬁﬂr?§ﬁ
Bl = [JsTo]
0 I 2 3 4 5 6 778 9 101 1213 14 15 16

mn _-_ d!.—-_aﬁuﬂzn.iﬂrg

([I= .“._ﬁ_hww
BT

3 4 5 6.7 8 9 1011 1213 14 15 16

CEEL T LT T Mo L Tole TaTaT o] vt

fg

2 3 4 5 6 7 8 9 10 101213 14 15 16

(T Tolle] TT T BB T TolsToToTe] vorust i

{

- Auuﬂu

O 1 2 3 4 5 6 7T B 9 10 11 1213 14 15 16

—._. _.._—-—a_ ___h —i “E.—-—u—-_c_z::r._!!&

!
2 3 4 8 6 7 8 % 10 0L 121D 14 13 16

noONOROO000 OoOnoENe

e

{AA.51)
01 2 3 4 3 6 7 8 9 10 MW 1213 14 15 16

LlefaTeT-T TiT: [Te To | CORrootietign e mesch s fouse
11118
R T

Hence return index 12, because a match with the pattern
is found from that location in rext.
Algorithm
Algorithm Naive (T[1....n),P[l....m])
{
// Problem Description : This algorithm finds
/1 the string matching using Naive method.
// Input : The array text T and pattern P
for (s « 0ton—m)do

{ . .
ifP[l..«.. mI=T[s+l...... s+m] then
print (“pattern finding with shift”, s) ;
} :
} // end of algorithm
Analysis) .

In the given example, if a match is not found then shift
the pattern to right by 1 position i.e. almost always we are
shifting the pattern to the right. The worst case occurs when
we have to make all the m comparisons. This results in worst
case time complexity of © (mn). For a typical word search
in natural language the average case efficiency is © (n).

Basic Notations and Terminologies

b e : It is pronounced as ‘sigma star’.
This notation denotes the set of all
finite length strings formed using
input set M
eg :
2={a} then Y *=(s. 22, am, ..}

Zero length string It is called empty or null string. It
. is denoted by ¢ (epsilon).

la| ¢ Means length of a string a.

Concatenation ¢ The concatenation of strings x and

y is denoted by xy with length
[x+}{ . The concatenation means
characters from x are followed by
all the characters from y.

The prefix means previously
occurring strings if w is prefix of
some string a then it is denoted as
w/a. :

The suffix means the string that
are occurring gffer particular
string. It is denoted by]. f wis a
suffix of some string a then it is
denoted as wja.

These notations are used in string operations.

——

Prefix of a string

Suffix of a string

\nyxplaln the prefix function for a string with an

example and wme KMP matcher algorithm?

[R.T.U. 2012)

OR
Write short note on Prefix function for string
matching. [R.T.U. 2018

Ans. Given a pattern P[1...m], the prefix function for the
pattern P is the function |

72 {1,2,.om} = {0, 1......,m —1)
Such that

n[q]=max{k+k <qand P]P }

. i.e. n{q]is the length of the longest preﬁx of P that is
proper suffix of P,

i 11[2(3]4(s5]6|7]8]9]10
Plijiajbja|bla|b|a|b|c|a]|.
(=tiriofof1]2]3]4]s]{6fo]1

P= ababababca and q=8. The = function for the given
pattern. Since n[8] = 6,n[6] = 4,n[4] = 2 and 1:[2] Oby iterating

% we obtain
n[8] = {6,4,2,0} 2
" ajlbjajbla|b| a b'c a
P, [a]b[a]® n'blc_. b ¢ a n{8] = 6
P, al bj a b'l.q b a .b c a =[6) =4
| P:- aTb al b ab .,a b ¢ a xf4] =2

€ iababababec ag=o

KMP Matcher Algorithm : Refer to Q.7.

e m, B4 wewm P

lon B = |

(B.Tech. (V Sem.) C.S. Solved Paper

re
P

nd
es

1ed
ced

iso

qt_-ﬂ_eu_u of bGoln—::hw

Algorithm TSP Backtrack(A, /, lengthSoFar, minCost

1. n < length[A] // number of elements in the arr:

A

ifl=n

3. then minCost « min(minCost, lengthSoFar
distance[A[n], A[l]])

4. clseforie/+1ton

5. doSwapA[/+1]and A[i]// select A[i] a

city .

newLength « lengthSoFar + distance

(A7), AlI+ 1))

~

solution
8. thenskip// prune
" 9. else minCost «
10.

11. Swap A[/ + 1] and A[i] // undo the selection
12. return minCost .

The worst case complexity of Branch and Bound remain
same as that of the Brute Force clearly because in won
case, we may never get a chance to prune a node. Where?
in practice it performs very weil depending on the differer
instance of the TSP. The complexity also depends on th
choice of the bounding function as they are the ones decidin;
how many nodes to be pruned. .

ugh it
rtices
every

im of

f two

s Boyer moore pattern matching algorith
appropriate example of good prefix and

character. JRTU. 2017,

OR
Explain Boyer Moore Algorithms with suitabl:
example. [R.T.U. 2016

OR
Explain both the heuristics of Boyer-Moor:
Algorithm with suitable examples. [RT.U. 2014

Ans. The Boyer—Moore Algorithm : If the pattern P i

relatively long and the alphabet string S is reasonably large

then an algorithm by Robert S. Boyer and J. Strother Moore

is likely to be the most efficient string-matching algorithm.
Boyer-Moore-Maicher (T, P, L)

/T is text

/[P is pattern

n « length(T]

m « length[P]

A « Compute-Last-Occurrence-Function (P, m, Z)

v + Compute—Good—Suffix—Function (P, m)

s« 0 .

whiles<=n-m

(= RV

o
<

\ i~ I

7 dojem
8 whilej>0and {P[i] =T[s + j]}
9 doje«j-1
10 ifj=0
11 then print “Pattern occurs at shift”" s
s « s +y[0]
else s « s+ max(y[j], j — MT[s +jID
ide from the mysterious—looking A’s and y’s, this

12

e loop béginning on line 6 considers each of the

\\E + 1 possible shifts ‘s’ in tum, and the while loop beginning
0

n line 8 tests the condition P[l.m] = T[s + 1 ... s + m] by
%Evﬁim P[j] with T[s +j] forj=m, m—1, ..., 1. If the loop
teymrfhates with j = 0, a valid shift Zj — As been found, and line

1/ prints out the value of s. At this level, the only remarkablé
geqtures of the Boyer-Moore algorithm are that it compares
pattern against the text from right to left and that it increases

v 9 shift s of'lines 12-13 by a value that is not necessarily 1.

The Boyer—-Moore algorithm incorporates two heuristics
that allow it to avoid much of the work that our previous string—
matching algorithms perfarmed. These heuristics are so

ffective that they often allow the algorithm to skip altogether
e examination of many text characters. These heuristics,

parallel. When a mismatch occurs, each heuristic proposes
amount by which s can safely match without missing a
valid shift. The Boyer—-Moore algorithm chooses the larger
amount and increases s by that amount : when line 13 is
reached after a mismatch, the bad—character heuristic
proposes increasing s by j — A[T(s + j)], and the good—suffix
heuristic proposes increasing s by y[j].
bad character
|.e

own as the “bad—character heuristic” and the “good — suffix
\0 heuristic”. They can be viewed as operating independently in
A

. e good suffix

. ST ERLREL T e e LR)+

- i_
—=p[r[efm[i[n]i]s]c]e[n]c]e]
(»)

N rnUONOORD0DNE0R0NONE
iiiii e ODUOUOBODON

(b) .

o (@ e TR o T e[IR[a]c)- -

(¢)
Fig.

{(AA50)
Fig. shows the example of Boyer—Moore heuristic.
(a) Matching the pattern “reminiscence” against a text by
comparing characters in a right to left manner. The shift s is
invalid; although a good suffix “ce” of the pattern matched
correctly against the corresponding characters in the text
(matching characters are shown shaded), the bad character
“i» which didn’t match the corresponding character “a” in
the pattern, as discovered in the text. (b) The bad—character
heuristic proposes moving the pattern to the right, if possible,
by the amount that guarantees that the bad text character will
match the rightmost occurrence of the bad character in the
pattern. (c) With the good-suffix heuristic, the pattern is moved
to the right by the least amount that guarantees that any pattern
characters that align with the good suffix “ce” previously found
in the text will match those suffix characters.

The bad—character heuristic : When a mismatch occurs,
the bad—character heuristic uses information about where the
bad text character T[s + j] occurs in the pattern (if it occurs at
all) to propose a new shift. In the best case, the mismatch
occurs on the first comparison (P[m] # T[s + m] and the bad—
character T[s + m] does not occur in the pattern at all, (imagine
searching for a™ in the text string b"). In this case, we can
increase the shift s by m, since any shift smaller than s + m will
align some pattern character against the bad—character, causing
a mismatch. If the best case occurs repeatedly, the Boyer—
Moore algorithm ‘examines only a fraction 1/m of the text
characters, since each text character examined yields a
mismatch, thus causing s to increase by m.

In general, the bad—character heuristic works as follows.
Suppose we have just found a mismatch : P(j] # T[s + j] for
some j, where 1 <j <m. We then let b be the largest index in
the range | < b < m such that T[s + j] = P[k], if any such k
exists. Otherwise, we let k = 0. k = 0, the bad—character
T[s + j] didn’t occur in the pattern at all, and so we can safely
increase s by j without missing any valid shifts. k < j : the
rightmost occurrence of the bad—character is in the pattern
to the left of position j, so that j — k > 0 and the pattern must
be moved j — k characters to the right before the bad text
character matches any pattern character. Therefore, we can
safely increase s by | — k without missing any valid shifts.
k>j,]—-k<0, and so the bad—character heuristic is essentially
proposing to decrease s. This recommendation will be ignored
by the Boyer—Moore algorithm, since the good—suffix heuristic
will propose a shift to the right in all cases.

The following simple program defines A[a] to be the index
of the right-most position in the pattern at which character a
occurs, for each a € L. If a does not occur in the pattern,
then Ala] is set to 0. We call A the last occurrence function
for the pattern. The expression j — A[T[s +j]], implements the
bad-character heuristic. (Since j — A[T(s +)]) is negative if
the :ui most occurrence of the bad—character T[s +j] in the
pattern is to the right of position; we rely on the positivity of

yll

. positions until the i’s line up. (c) The rightmost occurrence of
the bad—character in the pattern is at position k > j. In this
example, j = 10 and k = 12 for the bad character e. The

. align them with their rightmost characters matched, and no

Sllinnnnniaannaa)
(2)
o SR o [[T Te[e[_TTR[a] T}
1L

— [e elnlele] ;

eewjrfifuftiein] _s_uﬁ::o_n_n—.:._s_:.:

24 CTeTm[IRli[s[alelnlcle]

Fig. shows the cases of the bad—character heuristic. (a)
The bad—character occurs nowhere in the pattern, and so the
pattemn can be advanced by j = n characters until it has passed
over the bad—character. (b) The rightthost occurrence of the
bad—character in the pattern is at position k < j, and so the
pattern can be advanced by j — k characters. Sincej = 10 and
k =6 for the bad—character i, the pattern can be advanced 4

bad—character heuristic proposes a negative shift, which is

ignored.
Compute-Last-Occurrence-Function (P, m, I)

1 for each charactera €

2 do Afg] =0

3 forjeltom

4

5

do APl «j
returmn A

The running time of procedure Compute-Last—

Occurrence—Function is O(|Z| + m).

{B.Tech. (V Sem.) C.5. Solved Pape

yil=m-max {(k:0<kmandP[j +1.m]~1
That is, Y[j] is the least amount we can advance s ¢
not cause any characters in the “good suffix” T[s +j + |

$ + m] to be mismatched against the new alignment of -
pattern. The function y is well defined : for all j, sir
P(j + 1..m] ~ Py for all j : the empty string is similar to
strings. We call y the good—suffix funttion for the patterr
We first observe that y[j] < m—n[m] for all j, as follos
If w = n[m}, then P, 2 P by the definition of #. Furthermo
since P[j + 1 .. m]} o P forany j, we have Py ~P[j+1..1
Therefore, y[j] < m - nfm] for all j. .
Definition of y .
] = m - max {k : n[m] and Pj + 1..m] ~ P,}.
To simplify the expression for Y further, we define P'
the reverse of the pattern P and #' as the corresponding pre
function. That is P(f] =P[m-i+1)fori=1,2,..,m,a
w(t) is the largest u such thatu <tand P', 2 P',.
Ifk is the largest possible value such that P[j + 1.. m] 51
then we claim that #'[/] =m - j.
where P=(m = k) + (m—j). To see that this claim is w
defined, note that P(j + 1 ... m) 3 Py implies thatm - j <
and thus / <m. Also j <mand k <m, so that /> 1. We pro
this claim as follows. Since P[j + 1..m] 3 Pg, we ha
P’y 3 P'). Therefore, n'[/] > m — j. Suppose now tt
p > m — j, where p = «'(/]. Then, by the definition of «', 1
have P"p’ 2 P'; or equivalently, P'[1..p] =P'(l-p + 1..[].
Rewriting this equation in terms of P rather than P', \
have P(m —p + 1 m)=..Pm-[+1l.m—-1/+]
Substituting for / = 2m - k - j, we obtain P(m —p + 1.1
=Pk-m+j+1.k—m+j+p], which impliesP[m—p+1.1
3 Pymejep- Sincep>m-—j,wehavej+1>m-p+1, and
P[j +1.m] 2 P[m - p + 1..m], implying that P[j + 1..m]
| Pumejsp by the transitivity of 2. Finally, since p>m - j, v
|| have k'>k, wherek'=k —m + j + p, contradicting our choi
of k as the largest possible value such that P[j +1..m] 2 F
This contradiction means that we can’t have p>m —j, a1
thus p = m'- j, which proves the claim. n'[/] = m - j impli
that j = m — n'[{] and k = m — [+ ®'[[], we can rewrite o
definition of y still further.
Y] = m - max({n[m]}
Um=I+n[];1<I<Mmandj=m-n[})
= min({m - n[m]}

U{l-n'[N:1<!/<mandj=m-n'[}).
Again, the second set may be empty.
Compute-Good-Suffix-Function (P, m)

n < Compute-Prefix-Function (P)
P' « reverse (P)
7' « Compute-Prefix—Function (P*)

The good-suffix heuristic : Let us define the relation
Q~ R (read “Q is similar to R") for strings Q and R to mean
that Q 3 R or R 5 Q. If two strings are similar, then we can | «

iir of aligned characters will disagree. The relation “~” is
etric : Q~ R if and only if R ~ Q.

oAb W -

de ' >l forj«Otom
f D s | WD_..-A_ Sak ..—.b—vqo.t S. :..:.v do vq—..: —m-n —:&
If We find 93@5«.21.:.&.2&5.939.;3? forl « 1 tom
suffix heuri

ic says that we can safely advance s by

.

(Analysis of Algorithms)-

7 doj e m-n'l]

8 ify[j] > 1-=l]

9 then y[j] « 1 - n'[1]

10 retumy

The procedure Compute-Good-Suffix-Function is a
straight forward implementation of equation. Its running time
is O(m).

The worst—case running time of the Boyer-Moore
algorithm is clearly O(n — m +)m + [Z], since Compute—
Last—Occurrence-Function takes time O(m + |Z]),
Computer-Good-Suffix-Function takes time O(m), and the
Boyer-Moore algorithm (like the Rabin—-Karp algorithm)
spends O(m) time validating each valid shift s.

Q.20 What is backtracking? Explain B-queens problem,

also write algorithm for the same. « [RTU. 2016

—

OR o
What is backtracking. \ [RTU. 2015]

OR
Write the short note on backtracking algorithms.
[R.T.U. 2010, 2009]

Ans. Backtracking : Backtracking is a technique of solving
a problem by trial and error. However, it is a well organized
trial and error. We make sure that we never try the same
thing twice. We also make sure that if the problem is finite
we will eventually try all possibilities (assuming there is enough
computing power to try all possibilities).

Backtracking imposes a tree structure on the solution
space. Backtracking does a preorder traversal of this tree,
while processing the leaves. It saves time by using pruning,
that is, by skipping those internal nodes that do not promise
useful leaves. ’

Backtracking Algorithm

General steps involved in a backtracking algorithm are :

Step - 1: Choose a basic object, like strings, combinations

and permutations.

Step - 2: Apply divide and conquer approach to
generate these basic objects. Implement
through recursion.

Step - 3: The test of desired property is placed at the
base of recursion, that is with the leaves.

Step - 4: Toinclude pruning, place the code for pruning

before each recursive call
Fig. | shows that how during traversal if we do not find
a solution in a branch, then we backtrack to visit other branch.
This visiting of other branch by coming up one level in the
tree then following a level down in other branch is called
backtracking. It is done till a good solution is found.

Ing
v=(a,a
finite set
general 2
empty so
we are gc

Steg

Steg

Steg

Stej

Tog
Instead o
solution '
solution

Iy
versions

L

S
constra
. e
represt

Space !
.

—(B.Tech. (V Sem) C.5. Solwed Papen:

P[4] does not match T[6], ‘P* will be shift one position
* to the right.
(viii) i=8,9q=0,8=3
Comparing P{1] with T[4)
T—-ACABAABABA
I . .
P-> ABABCB
P[1] does not match with T[4], ‘P’ will be shift one
position to the right.
(ix) i=9,9=0,S=4
Comparing P(1] with T(5]
T—-ACABAABABA

1
P> ABABCB "

v P[1] match T[5], Since there is a match, P is not shifted.
(x) i=10,q=1,8=4
Comparing P[2] with T[5)
T>ACABAABABA
j I
P ABABCB
P[2] does not match T[6], and now it is nat possible to
shift one pogition to the right. g
Thy#, we get the pattern not match at any shifting.

/@1\ at is the use of prefix function in KMP string
\\ggftisorithm? Explain with example. [RTU. 2011}
> OR ;
What is prefix function and how s it computed for
KMP-matching algorithm ? Give KMP-matching
algorithm and compare it with naive string—
maiching algorithm.

[Ra). Univ. 2006, 2003, 2003, 2001, 1996]

E.mss.aes?gﬁm!iﬁa ss
prefix functions. > . e e
Step 1 : Compute-prefix-function

m = length [P] =5

=[l]=0
initialize k =0,
Forq=12,

Pk+1]=P[l]=a

Plq] =P2]=a
P[k + 1] =P[q),
So, k=k+1=1
So, xfq] =n2]=k=1

Forq=1,

Forgq=3,k>0, L
Plk+1]=P[2]=2a
Plq) =P[3]=b
= P[k + 1] # P[q]
So, k==k]=n[1]=0
Now, Pk+I1]=P[1]=a
 Plq)=PB]=b
Plk + 1] # P[q]
Sa, n[q] =n{3]=k=0
Forq=4,
Pk+1]=P[l]=a
Plq) =P[4]=a

= Pk +1] = P[q]

So, k=k+1=1
and alq] ==[4]=k=1
.Forq=5k>0,

Plk+1]=P[2]=a
Plq] =P[5]=b
= Pk + 1] # P[q]
So, k=nlk]=n[1]=0
Now, Pk+1]=P[l]=a
Plq] =P[5]=b
Pk +1] = P[q]
So, n[51=k=0
Thus, we have the prefix function for the pattern as follows

q 1 2 3] H
| Plg] a a b a b

(Analysis of Algorithms)

nlq] 0 I- 0 1 0
Step 2 : After getting the prefix function we perform th
matching of text T and pattern P,

n = length [T] =17

m = length [P] =5

q=0

Fori=1,
Plq+1]=P[l]=a
T(i] =T[1]=a

> Plq+1]=T(})

So, q=q+1=1

and q#m

Fori=2,
Plg+1]=P2]=a -
Tl =T(2] = a

= Plg+1]=T[]

mp A_.ﬁ_.p

Fori=3,
Plq+1]1=P[3]=b
T =T(3)=a
= Plq+ 1] = T[ijandq>0
So, q==[q]=n[2]=1
Still g> 0 and P[q + 1] =a =T[i]
So, q=q+I=2
Fori=4,
Plq+1]=P[3]=b
T[] =T[4]=b
= P[q + 1] =T[i]
So, g=q+1=3
Fori=>5,
Plq+1]=P[4]=a
T[] =T(5]=a
= Plq+ 1] =T(i]
So, q=q+1=4
Fori=6,
Plg+ 1]=P[5]=b
T(] =T[6]=b
= Plg+ 1] =TIi)
So, q=q+1=5
Here, q=m
So, pattern occurs with shifti—m= 1
and q=mn[q]=n[5]=0
Fori=1,
We have to search for another pattern match in the
rest of the text.
q = 0 from the last iteration
Plq+1]=P[l]=a

T[] =T[71=a
= Plq+ 1] =T[i]
So, q=q+1=1
Fori=38,
Plq+1]=P[2]=a
T[] =T[8]=a
= Plq+ 1] =T[i]
So, q=q+1=2
Fori=9,

Plq+1]=P[3]=b
T =T[9]=b
= Plq + 1] =TIi]
So, q=q+1=3
For i =10,
Plq+ 1] =P[4]=a
T[i] =T[10]=a
= Plq+ 1] =TI[i)
wo. nua+_l.o

| i e

Fori= 11,

Plq+ 1] =P[5]=b

T[] = T(11] =

s Plq+ 1] =T[ijandq>0
So, q « n{q] = n[4] = |
Now, Plg+1]=P[2]=a
= Plq+ 1] =Tl
So, q=q+1=2
Fori= 12,

Plq+1]=P[3])=b
T[i] = T[12]=b

- Plq + 1] =T[i]
So, q=q+1=3
For i =13,
Plq+ 1] =P[4]=a
T(i] =T[13]=a
=5 Plq+ 1] =TIi]
So, q=q+1=4
Fori= 14,
Plg+ 1] =P[5]=b
T[] =T[14]=b
= P[g + 1] =TI[i]
So, q=q+1=5
Here, q=m
So, pattern occurs with shifti—-m=14-5=19
and q=n[q] =x[5]=0
For i = 15,

Plg+1]=P[1]=a
T(i] = T[15) =a

= Plq+ 1] =T[i]

So, g=q+1=1

Fori=16, '
Plg+1]=P[2]=a

T[] = T[16]=a

= Plq + 1] =T[i]

So, q=q*1=2

Fori=17,

Plq+ 1] =P[3]=b
T[] =T[17]=b
= Plq + 1] =T[i]
So, q=q+1=3
This is the end of text, but q # m so, no more patterns
match the text. Thus, finally we have pattern matching the
text with shit S=1and S=9.

The basic idea is to slide the pattern towards the right
along the string so that the longest prefix of P that we have
matched, matches the longest suffix of T that we have already
matched. It the longest prefix of P that matches a suffix of T
is nothing, then we slide the whole pattern towards right. The
algorithm computing prefix function is given as :

Function Compute-Prefix (P) : The above function
computes the prefix function, which determines the shifting
of pattern matches within itself.

— ~(B.Tech. (V Sem.) C.8. Solved Papers |

‘ AA.70 }
Step 1 : Initialization
set m « length [P]
set Pf[1] « O
setk« 0
Step 2 : Loop, computation of possible shifts
for q « 2 to m; while (k > 0 and P[k + 1] # P[q])
set k « Pfk]
if (P[k + 1] = P[q]) then
setk - k+1
set Pf[q) « k

Step 3 : Return value at the point of call : return (Pf).

The above algorithm runs in O(m) amortized time. The
Knuth-Morris-Pratt algorithm for matching the string is given
below :

Procedure KMP-Matcher (T, P) : The above
procedure computes whether the given pattern P is present in
the text string T or not. It uses auxiliary function ‘compute-
prefix’ to computer Pf.

Step 1 : Initialization

set n « length [T] ; set m « length [P]
: Calling Compute-Prefix
Set Pf « Compute—prefix (P).
: Numbers of characters matched
setq<« 0
Step 2 : Loop, scanning from left to right along text
fori <« 1ton while (q>0andP [q+ 1] #T[i])
set g « Pf[q] :
: No matching of next character
if(P[q+1]=T[ijthensetq« q+1
¢ Matching of next character
if (q =m) then
: Whether all character of P matched ?
display : “pattern occur with shift” i —m. set q « Pf[q]
: look for next match
The above algorithm has O(n + m) total running time.
Knuth-Morris-Pratt Algorithm versus Naive
Linear time string matching was first discovered by
Knuth, Morris and Pratt. They performed a rigorous analysis

of naive algorithm and suggested a method to use the

properties of string to be searched (pattern). Their method
stores the information, which naive approach wasted, while
scanning the text. To record the information in useful form it
makes use of an auxiliary function 7.

The basic idea is to observe the string to be matched
(called pattern) and find if it has some repeated substrings
(or prefixes specifically). Repeated prefix allows shifting of
pattern by larger distance than naive approach during
matching. To illustrate this concept, let us consider

P=xyxyzxyx
Suppose during matching, a mismatch occurs at 'z’".
Tz xJy[x[y]x]y][x]y|z]x]y]=x

¥ S

TIT|[T|T|# ;
P x |y | x]|y|z .
If we use naive algorithm, we will shift in text by one
character ahead. But here, till z, we had matched ‘x y ' then
‘xy’. So we can align the first pair of x y in pattern with next
pair of x y in text. Thus, we move ahead by two places instead
of one.

Tlzl{x|y|x|y|x|[y]|x]ylz]x]y]x]
TIF T3 ,

P x |[y|x|[y]|:z L

Again a mismatch occurs, and we shift ahead by two
places. '
Tlz|xly|x|y|x|y|x]|y|z]x y|x
FIETTITITE
P x ly|[x|y|:z

Now, we have a match. We performed only two shift
operations instead of four. Thus, this technique can save time.
_ Obviously, the achievement over naive approach depends
highly on the pattern and text. A pattern with longer prefix
repetition will give a faster search if text also contains high

frequency of that prefix. .
Qaa

alg

the 1
we r

{B.Tech. [V Sem.) C.S. Solved Papei

Koottt b M s gl bt alitlier_iaad

Previous YEArRs QUESTIONS

ParT-A

What do you mean by randorhized algorithms.

Ans. A randomized algorithm is defined as an algorithm that
is allowed to access a source of independent, unbiased
random bits, and it is then allowed to use these random bits to
influence its computation.

Q2 What is satisflablllty problem.

Ans. It is the problem of answering whether a boolean formula
is satisfiable or not and boolean formula is in Conjunctive
Normal Form (CNF). It is a collection of clauses in
conjunction, each consisting of the disjunction of several

|

Q3 Write the advantages of randomized algorithms.

!

Ans. :

* Randomized algorithms are better than probabilistic
analysis. ’

* In randomized algorithm, we randomize in the
algorithm, not in the input distribution.

¢ For most of randomized algorithms, no particula, input
elicits its worst - case behaviour.

f!

Q.4 Define Literals,

ﬂ

Ans. A literal is either a boolean variable (such as x) or the

negation of one (such as X). Hence, there are two literals
per variable.

f

QS5 Write disadvantages of randomized algorithms.

f

Ans. Disadvantages of Randomized Algorithm

The randomized algorithm performs badly when the
random-number generator produces an “unlucky”
permutation. .

Randomizing the input takes some additional time.

ParT-B

ort note on Quadratic assignment proble
[R.TU. 2018, 20,

: OR
Explain the quadratic assignment problem wi
suitable example. T TTTIETU 2016, 204

Aps. Quadratic Assignment Problem (QAP)

The Quadratic Assignment, Problem (QAP) is one
fundamental combinatorial optimization problems in the bran
of optimization or operations research in mathematics, fro
the category of the facilities location problems.

The problem models the following real-life problem :

There are a set of n facilities and a set of n locatior
For each pair of locations, a distance is specified and f
each pair of facilities a weight or flow is specified (e.g., !
amount of supplies transported between the two facilitie:
The problem is to assign all facilities to different locatio:
with the goal of minimizing the sum of the distances multipli
by the corresponding flows.

Intuitively, the cost function encourages factories wi
high flows between edch other to be placed close togethe

The problem statement resembles that of the assignme
problem, only the cost function is expressed in terms «
quadratic inequalities, hence the name.

It is stated as:

“If there are n locations and n facilities and each facili
is assigned to only one location at a time then the quadrat
assignment problem is to obtain minimum cost. This cost cz
be computed using distance between two locations and flo
between two facilities”.e.g. .

Location 1

o Facility 1

Location
Facility 3

Pacility 4
Fig.

—AAT3

£

Here .
« Facility 1 is assigned to location |
« Facility 2 is assigned to location 2
« Facility 3 is assigned to location 4
« Facility 4 is assigned to location 3
The lines between two facilities represent the flow

between those two facilities. Suppose

dist(1,2)=10 dist(1,4)=23
dist(1,3)=40 dist(3,4)=15 ,
The required flow between the facilities is
flow (1,2)=1
flow (1,4)=4
flow (1,3)=3
flow(3,4)=2
Then total cost Z =3 dist (i, j)* flow (i, j)
Z=10x1+40x4+23x3+15x2
=10+160+69+30 = 269
The objective is to find best possible permutation in order

to obtain minimum cost.

The Quadratic Assignment Problem (QAP) is NP-hard

problem and there is no algorithm for solving this problem in

polynomial time.

domized min cut theorem with suitable

S
> Feample. 1.0 2018, 2016

OR
State the Randomized min cut theorem. [R.TU. 2014]

Ans. Randomized Algorithm

6.

Algorithm min_cut_randomized

Input a multi graph G.

While |v| 22 do.

Pick any edge e randomly and contract it.
Remove self loop.

End while.

Return the set of the edges ﬂmﬂ ;

Explanation :

Let G=(V, E) be a multigraph with n vertices and m

edges. And we know that a cut is a set of edges which cuts
the graph into two connected components.

The minimum cut is the cut of minimum size.
The minimum cut has size at most the minimum degree

of any mode. The minimum degree can be much larger than
the size of the minimum cut.

To determine the min-cut

(a) We pick an edge uniformly and merge the two
vertices at its end points,

(b) There are several edges between some pe
of newly formed vertices.
(c) Edges between vertices that merged are
removed, so that there is no any self-loop
(d) With each contraction the no. of vertices of G
decreased by one
Note
e In the process of determining the min cut removing
self loops does not have any effect on the size of the
min cut.
o Edge contraction can only increase the size of the min
cut.
Examples

5
4] 4 5 <
_”VN”V
2
1,2 1,2
3 3 3

Fig.

@g Las Vegas algorithm with example.
T JRT.U. 2018, 2012/
OR

Compare Las vegas and Monte carlo algorithm
approaches. [R-TU. 2017, 2015}

OR
What do you mean by randomized algorithms.
Explain Las Vegas algorithms and Monte Carlo
algorithms with suitable example. [R.T.U. 2016, 2015]

Ans. Randomized Algorithms : In order to use probabilistic
analysis, we can use probability and randomness as a tool for
algorithm design and analysis, by making the behavior of part
of the algorithm random. :

For example, in hiring problem, it may seen as if the
candidates are being presented to us in a random order, but
we have no way of knowing whether or not they really are.

i.e. we call an algorithm randomized if its behavior is
determined not only by its input but also by values produced
by a random-number generator.

If RANDOM_GEN is a random_number generator
then

RANDOM_GEN (3, 7) returns either 3,4,5 6,0r7
cach with probability 1/5.

Exampie
Randomized_Hire_Algo (n)
/fn is total no. of candidates
1. Randomly permute the list of candidates.

¥y 9 9 v @

AA.74

2. Best = 0 //candidate 0 is a least-qualified dummy
candidate.

Fori=1lton

Interview candidate i

If candidate i is better than candidate best

Best=|

Hire candidate i

Lu Vegas Algorithm

A randomized algorithm is called Las Vegas if its output
is always correct but its running time is a random variable
Randomized quicksort is an example of Las Vegas algorithm.
Its output is always a sorted table, but the running time is
random.

Usually the analysis of a Las Vegas algorithm tries to
bind the expected running time, or bound the running time
with high probability.

Example .

e Average running time analysis assumes some
Jdistribution of problem instances.

* Robinhood effect

LV “steal” time from the “rich” instance -- instances
that were solved quickly by deterministic algo -- to give it to
the “poor” instance.

Reduce the difference between good and bad instances.

In computing, a Las Vegas algorithm is a randomized
algorithm that always gives correct results; that is, it always
produces the correct result or it informs about the failure. In
.- other words, a Las Vegas algorithm does not gamble with

the verity of the result; it gambl®s only with the resources
used for the computation. A simple example is randomized
quicksort, where the pivot is chosen randomly, but the result
is always sorted. The usual definition of a Las Vegas algorithm
includes the restriction that the expected run time always be
finite, when the expectation is carried out over the space of
random information, or entropy, used in the algorithm.

Las Vegas algorithms were introduced by Laszl6 Babai
in 1979, in the context of the graph isomorphism problem, as
a stronger version of Monte Carlo algorithms. Las Vegas
algorithms can be used in situations where the number of
possible solutions is relatively limited, and where verifying

. the correctness of a candidate solution is relatively easy while

NeneaEwW

" actually calculating the solution is complex.

Monte Carlo Algorithm

Randomized algorithms are those in which we consider
some variables for time and resources and are called
randomized so that we could compute the desired result.

Monte Carlo and Las Vegas are such algorithms which
uses the randomized algorithm to calculate the resuit.

In Las Vegas we are sure to get a correct output but
we have 10 keep in mind that the expected running time is

{B.Tech. (V Sem.) C.S. Solved Pape
finite. Las Vegas does not gamble with the correctnes:
result it only gambles with the resources used.

In Monte Carlo there is a boundation on running ti
and we are not sure to get a 100% correct result. It gamt
with the result but it have to keep in mind the time allotec

Randomized Quick Sort (S)

(1) We choose an element y from S In this, e
element in S have equal probability of being chos

(2) Now we divide the S sequence in two parts
containing elements smaller than y (S,) and ot
(S,) containing element greater than y

(3) We recursively call random sort (S) for seques
S, and S,.
(4) We place the elements after sorting like cleme
of S,, y and then elements of S,.
(5) Exit.
Randomized algorithm deals or gambles with the va
choosen, it could be time as well as resources.

—_— T —

Q9 Solve [=(x,vX,)(x,v%,)(Xvx,)(x,vx,) wusi
randomized algorithm. IRTU. 20

Ea————
Ans. Using Randomized Algorithm

£ = () VR)06 VR (K vy (X g v)
Pick x, at random, so T = {x,}
Put X, = True

Remove clauses centering x,, which is (x,vX,)

Now, f = (v XX vy Xx vig)

due to X,, force variables are x,
T = {x,}

Put X3 =True

Remove clauses centering x;, which (X,vx;) a

(x3¥X,)
Now, f=(xv Xg)
There are no forced variable due to Xy
Pick x, at random
T={x)
Remove clauses centering x,, which (v x,)
Now f = ture
So, stop truth assignment is
{False, True, True, True, False)
which represent {x,, x,, x,, x,, Xg)e

m

(Analysis of Algorithms jem— -
Q.10 State the assignment problem and solve the following
‘assignment problem using branch and bound for
which cost matrix is given below.

4 7 5
Cost=2 6 1 IR.T:U.ZOI”
3 9 8
——eeeeeeeeeeeeeee e
Ans.
1 J_a
Ald T 5}
=B ‘i 6 1
c{3 9 8
lb=4+1+3=8
lower bound
Start (b =8) .
A=, A-J . A=l
b=13 b= 11 b=16
, (4+1+8) (7T+1+3) (8+2+9)
B-J, . B-Ja.
b=18 . =11
(7+2+8) T+1+3)
‘ d. . G-
Final job assignment '
Jl JZ JJ
A 4 5
B 2 6
cho 8

/Give randomized algorithm for min cut of ;_;,e,'
Jollowing graph. . AN - ik

[RTU. 2017}

| oz

==

Ans, Randomized algorithm for min cut

. ‘ Min Cut=2
v={F}U{A,B,C,D, E}

‘(a) Find Maximum flow in above network.

(b) Findthe corresponding minimum cut and check
that its capacity is same as that value of
maximum flow found in a) part. [R.T.U. 2017)

AA.76

(») Maximum Flow

1
Maximum flow = 19 + 4 =23
(b) Minimum cut using ford fulkerson’s algorithm
0

In residual graph, v, -—)3v3,
residual capacity of 0.

Hence minimum cut

EVITOVLV3 oV, v ot ;
Flow]'llmugh min cut= 12 +7+4=23

V3 —> V4 and v, - t has

Job 1 Job 2 Job 3 Job 4
Person 1 9 2 R 8
Person 6 4 3 7
Person 1 5 8 1 8
Person 1 7 6 2 4
[Note: Consider person a, person b, pd:on ¢, persond.] i
' [R.T.U, 2016]
Ans,

' Job 1 Job2 | Job3 | Job4

Person a 9 2 7 v 8

Person b L6 4 3 7

Person ¢ 5 8 i '

Person d 7 6 2 4

Lower bound ; Any solution to this problem vgili have

total costatleast: 2+3+1+2(or5+2+1+4)
""" First two level of the state-space tree-
. 0
Start
1b=2+3+142=8

d A

a1 a2 av3 a4 :
Ib=9+3+1+2=1 5| 1b=2+3+142=8| lIbm=7+4+ 5+4=20} | Ib=8+3+1+6=18]

={ B.Tech. (V Sem.) C.8. Solved Papers

Figure 1 Levels 0 and 1 of the state-space tree for the
instance of the assignment problem being solved with the
best-first branch-and-bound algorithm. The number above :
node.shows the order in which the node was generated. A
node’s fields indicate the job number assigned to person ¢
and the lower bound value, Ib, for this node.

-0

Start
Ib=8§
1 2 / 3 4
a1 a—» a3 a—>4
Ib=15 lb=8 Ib=10]" Ib=8
5/ 6 5
b— b— b—
b=11 Ib=12 Ib=12
' Fig.2
Figure 2 Levels 0, 1, and 2 of the state-space tree for
the instance of the assignment problem being solved with the
best-first branch-and-bound algorithm,
0
[Start |
ib=38
1 : 2 / \ 4
=Y a2 a3 . a—4
lb=15 Ib=8§ 1b=20 Ib=18
X X X
'5/ RN
b—1 b3, . b — 4 Vi
b= 11 Ib=12 Ib=12 '
X X
i :
e X . c—>4
d54 d—3]
cost =13 cost=18| .
solution inferior solution
Figa

Figure 3 éomplqtg state-space tree for the instance of
the assignment problem solved with the Jbest-first branch-
and-bound algorithm. :

Q.14 Give a randomized solition for Min-cut of following

graph. .
- n& '

[RT.U. 2015]

o o s Reenens:.|

T RITT————

Also, capacity of minimum cut = value of maximum flow
6+5+1+2 =6+5+3
(min-cut capacity) (max-flow value)
14 = 14

é: m flow networks and solve the following flow
network for maximum flow :
i2 0

[R.T.U. 2011, Raj. Univ. 2006]

—_———
Ans. Flow Networks : Flow networks define the flow of
the network. Where forward arrow defines the forward flow
(source to destination) and backward arrow defines backword
flow (destination to source).

To make flow network for maximum flow first we make
residual network.
Residual Network (1)

{B.Tech. (v Sem.) C.S. Solved Papers
Residual Network (2) RS
1

(Analysis of Algorithms)
Flow Network (5)

e ——
Q.22 Write short note on Bi-quadratic Assignment
Problem. [R.TU. 2011}

M
Ans. Biquadratio Assignment Problem : A generalization
of the QAP is the Biquadratic assignment problem denoted
BiQAF, which is essentially a quadratic assignment problem
with cost coefficient formed by the products of two four-

dimensional arrays. More specifically, consider two n* x n'
arrays, F = (fjj) and D = (dpps)- The BiQAP can then be

_stated as :-
n n L] n
min 2 2 2 2 fidmpaXimX jpXisXn
i=l k=1 mpsl =] .

such that g".j=i.j-1,2,...,n

n .
Yxyshi=12,...n
=

X; € {0,1},i,j=12,....n

The major application of the BiQAP arises in Very
Large Scale Intcgrated (VLSI) circuit design. The majority
of VLSI circuits are sequential circuits and their design
process consists of two steps : first, translate the circuit
specifications jnto a state transition table by modeling the
system using finite state machines and secondly, try to find
an encoding of the states such that the actual implementation
is of minimum m.Equn-]fndr,ﬂn‘zBl_QAPm be stated as :

min Y Y D) fudsauamncnn

L i o |
where, [n denotes the set of all permutations of
N={1,2, .\.., n}. All different formulations for the QAP car
be extended to the BIQAP, as well as most of the linearization:

that have appeared for the QAP. The computational result
showed that these bounds are weak and deteriorate as thi

dimension of the problem increases. This observation suggest

i hod)
{v. Hungarian Met — R
Jems can be formuia N i S
lved by the special method call.ed
was developed by D. Konig,
is therefore known a5 the
f assignment problem. In order to use
ds to know only the cost of maklr;ig all
i i S ignment problem has 2

he possible assignments. F,acl? assignme .
:n:t::’ (table) associated with it. Normall}f, the objects (or
people) one wishes Lo assign are exprgssed in 1:ows, whereas
the columns represent the tasks (o things) assigned to them.

The number in the tabl

a Hungarian ma
Hungarian method ©

¢ would then be the costs associated
with each particular assignment.

OR
What do you mean by Multi-Commodity Sflow in the

. network? Find the max flow path by Ford-Fulkerson
method for given network.

Flg. [R.TU. 2018, 2014/

_Dacn'be problem definition of Multicommodity flow
in the network. State and prove the Ford Fulkerson’s

theorem. [R.TU. 2016}
(" State multicommodity flow problem, TU. 2015/
" OR

in multi commodi ;;-*_a,‘w?_.____, E
s ey e
A A

Show the formation of cuts, augme,
A ni
Slow-max-cut in the Sollowing grapl‘:.ﬂo Ly

 §

(anss) -
Ans. Mu!ticommodity flow : Multi Commedity Flow (MCF
problem is characterized by a set of commodities to be routes
thrgugh a'network ataminimum cost. It yields formulation o
optimization problems that arise in industrial application sucl
as transportation or tele-<communications.
Where commodities may represent messages ir
telecommunications or vehicles in transportation.
e Each commodity has to be transported from one o
several origin nodes to one or several destination nodes
e Given a network represented by a directed grapt
G = (V, E) in which each edge (u, v) € E has a nor
negative capacity c(u, v) 2 0.
e Each commodity has to shipped from a set of supply
nodes to a set of demand nodes.

e Weare given k difierent commodities, k;, k;...k;

Where

Commodity i is specified by the triple
k; = (s tis d,)

Where

s; = source of commodity i
t; =sink of commodity i
~* d;=demand which is the desired flow value for
commodity i from s; to t;.

e Flow for commodity i, denoted by f, is defined by a
real-valued function that satisfies the three constraints
of flow problems namely. Capacity constraints, skew
symmetry and flow conservation.

e £ (u, v) is the flow of commodity i from vertex u to
vertex v.

The agreegate flow f (u, v) is the sum of the v.-ious
commodity flows,

k
ie. £, v)= 26V

i=l -
Note : This aggregate flow must not be more than the
capacity of edge (u, v)

k)
ie. Z‘fi(“-")sc(“-") for each u, v €V

i=l
fi(u, v) =f;(v,u) fori=1,2,.k

Examiple
Capacity

DO CCOODOO00O00O0O0O0O0

f

r

,’7./ _

1
Fig. : Three commodity flow problem

As shown in above figure, there are three commodities
flowing through the network.

\m-wm

e e,

) I I JIVLULULULULOLULCLCCLCLCLCLCLECL L C L

|

(E.Imqummj
N 4, Whﬂeﬂlereemstsapaﬂ:pﬁomstotmmercsldual
networkG

5. doC ,(p) ¢ min [C (u,v): (u,v) is mp]
6. for each edge (u,v)€ p
7. do f[u,v] < fluv]+C,(p)

8. f[vu)e —f[u,v]

we can apply Ford-fulkerson algorithm to get the
maximal flow through network.
Analysis : The total running time for Ford-fulkerson algonthm
isOEI*)D N
Example : Show the step by step unplementatlon of Ford-

Solution: Here, we show the step by step implementation
procedure of Ford fulKerson algorithm.
FORD-FULKERSON (G s, t) :
Step 1: Find edge (u, v) which are in E (G) i.e., edge (u, V)
cE(G) and set ffu, v) = 0, f{v, w) =0

L(5¥) = L (Vh) = £ ()= £oVVo) = fo (s:F2) =0
Also, £,(V.¥)= £u(12:2) = £o (V2. V) = 1o (Vor¥3) =0
Jo(Vr)=0

Step 2: Consider path s 5V, =2V, >V, >V, !¢ froms
to t. Calculate FAP (Flow augmented path)

o(s,¥)- fo(s,¥)=16-0=16>0
o(V,1,)- £o(VuV;) =12-0=12>0
o(Vuby)- 1o(h.,)=9-0=9>0
o(V, V)~ £y (FV.) =14-0=14>0
a(Vot)-fo(Vist)=4-0=4>0

= C, (p)=min{C, (u,v):'(u,v)ep}
=min{16,12,9,14,4}
o
Step 3: For each edge (u, v) e p (flow augmented path)
Set f[u,v]f—f[u,v]+C,(p)

= f[u,g|-0+4-=4 ; | |

Shows the flow f(u, v) = 4 by FAP
Step 4: Set f[v,u] < —f[u,V]

Since path s >V, > ¥, >V, — ¥, = does not
contain other edges, so they are net in flow augmented path.
Again test for FAP with new flow, to find out new path.

Step 5: Consider path s> V>V, >V, 5V, >t ﬁ'om s

to t. Calculate, flow augmented path, with new flow.
a(s,V)-f,(S,V)=16-4=12>0
o(V,V,)- f,(V,,V,)=10-0=10>0
(V) - £i(Var¥) =14-4=10>0
oV, V)~ fo(VasVy) =T-0=7>0
o (V)= £ (V.t) =20-0=20>0

Step 6: Now find C,as: '
C, =min{C, (u,v):(u,v)e r}
=min[12,10,10,7,20]

=7
That is minimum capacity of flow C,is 7.

Step 7: For each edge (,v) € p (flow augmented path) find
f(u, v) as:

‘f(u,v)4—f(u,v)‘+C,-(p)

LK) =£(sV)+C (p)=4+T=11

L) = £ (VW) +C,(p)=0+T7=7
L) =£(F) +Cp(p) =4+ T +11
VW)= £, (F1)+Cp(p)=0+7=7

' ﬁ(i’:»’)'—'f;(an)+C,(p)=O+1=7

S —

—{ B.Tech. (V Sem.) C.8. Solved Papen

.
Now, we show that flow in the graph as follows:

Step 9: Consider path s > ¥, >V, =V, =1 fromstot,
calculate flow augmented path, with new flow.

o(s,V,) - fo(s,¥;)=13-0=13>0
o(V, V)~ 1 (Vy¥,) =11-3=850
o(%.1,)-f(%.V,)=12-4=8>0
o(Vy,t)=f(V3s1)=20-7=13>0

Step 10: Now again find C, as:
C = min[C, (u,v)]
=min[13,8,§,13] =8

That is, minimum capacity of flow C, is 8.

Step 11: For each edge (u,v) e p(FAP) we find f{u, v) as:

f(u v)e f(u v)+C’ (p)

Similarly for path s = V; = ¥, =1
12/12

- Show the maximum flow
Below, we show the residual network which has no augmentir

paths

Explain Flow shop scheduling with suitabi

example = [RT.U. 201

-~ 'OR

Briefly describe flow shop scheduling and networ

capacity assignment problem. [R.T.U. 201,
OR

Write Flow shop scheduling algorithm. [R.T.U. 201.

_—mm———
Ans. Flow Shop Scheduling : A flow shop problem exis

| when all the jobs share the same processing order on all t}

machines. In flow shop, the technological constraints deman
that the jobs pass between the machines in the same orde
Hence, there is a natural processing order (sequence) of tt
machines characterized by the technological constraints fi
each and every job in flow shop. Frequently occurring practic
scheduling problems focus on two important decisions:

* The sequential ordering of the jobs that will t
processed serially by two or more machines

* The machine loading schedule which identifies tt
sequential arrangement of start and finish times on eac
machine for various jobs.)

Managers usually prefer job sequence and associate
machine) ading schedules that permit total facility processir
time, mean flow time, average tardiness, and average latene:
to be minimized. The flow shop contains m different machin
arranged in series on which a set of n jobs are to be processe
Each of the n jobs requires m operations and each operatic

S S W Y s ™ W e

=

5

(B.Tech. (v Sem.) C.5. Solved Pagers

packet length measured in bits, (¢) Maximu
allowable delayfor each packet class measured i
seconds, (d) Priority of each packet class, (¢) Lin
lengths measured in kilometers, and (f) Candidaf
capacities and their associated cost factor
measured in bps and dollars respectively.

5. A non-preemptive FIFO queuing system is used {
calculate the average link delay and the averag
network delay for each class of packet.

6. Propagation and nodal processing delays ai
assumed to be zero.

Based on the standard network delay expressions, a

the researchers in the field have used the following formule
for the network delay cost:

i
L1 P Fmp
[.E ﬂ.c,] M

T~ u)0-u) ",
lﬁ-f
B
L Tks
A

T

In the above, T}, is the Average Link Delay for pack:
class k on link j, U, is the Utilization due to the packets
priority 1 through r (inclusive), V, is the set of classes whos
priority level is in between | and r (inclusive), , is the Averag

Delay for packet class, ™ = Z’U is the Total Packet Ra
onlinkj. T+ = Zra

Total Rate of packet class k entering the network, ljk
the Average Packet Rate for class k on link j, mkis the Averag
Bit Length of class k packets, and Cjis the capacity of link

As a result of the above, it can be shown that the proble:
reduces tg an integer programming problem.

Q.26 _Solve the assignment problem using Hungaria
algorithm for which the following cost matrix
15597
21365 ‘/
78311 .
24610

; [RTU. 201
e —es
Ans. First of all we subtract the minimum of each row for

L

their row to have at least one zero in every row of the matri:
- Al

1]

(Anglysis of Algorithms)

e My M; M; M, .
1|15 5 9 71]-5
L2 136 5|2
57 8 3 1f-3

L2 4 6 10]-2
\:
M, M, M, M,
Lo o 4 2
LIo 11 43
o Lhl4 5 0 8
CoLlo 2 48
-2

M, does not contain any zero. Now we have to
subtract the minimum number from each element of M,.

et

[

M, M; M; M,
510 0 4 ¢
Llo 11 41
L4 s 06 ‘
Lo 2 46

Now we try to cover all the zero with minimum number
of horizontal (or vertical) lines.

Junction elements

Since the number of lines are 3 which is not equal to
the arder of matrix (3 4), we take minimum of uncovered
element i.e. 1. This 1 is subtracted from all the uncovered
elements and added to the junction elements (i.e, 10 and 4).
Now we try to cover all the zeros with minimum number of
horizontal (or vertical) lines.

M, M, M, M, M, M, M; M,
5, - 1, [H—0—5—0]R,
I, 0 10 1,|-6—0—4—6 (R,
L4 4 o I,|4—4—8—5|R,
Lo 1 J4|[-6—+—4—5|R,

Now, number of lines are 4 which is equal to the order
of matrix (4 =14), '

.
——— ! —

. —— @)
Now, we have to see the rows where the number of
zeros are single. Row R, and R, is like that one. So
corresponding to this zero, we assign job R, — J, and
R, — J, to machines M, and M, respectively, rest of the jobs
are to be assigned to machine M, and M,. We can see that
Job J, can be assigned to machine M, and M,, Job J, can be
assigned to machine M, and M,. By this we can see that
machine M, is already acquire by the job J, so job J, must be
assign to machine M, and the rest of machine that is M, is
acquire the job J,.

Here, readers are encouraged to check all the possible
combinations whether they lead to minimum cost. One of the
possible combination is :

M, M, M; M,
,-M i[O s o
J,->M, L0 10 4 [0
oMy B4 4 [o] s
JZ“‘)M“ 14@ 1 4 5

Now we calculate the total cost using cost matrix given
i-itially. . y
Cost=(J, > M)+ (J, > M)+ (J; = My)+(J; » M,)
= =2+5+3+5

=15 i Ans,

R T
Q27 Find the maximum flow for the following flow
network using fordfulkerson method.

1

[R.T.U. 2012

%
Ans. The Ford-Fulkerson method depends on three important
ideas that transcend the method and are relevant to many
flow algorithms and problems: residual networks, augmenting
paths, and cuts,
" The Ford-Fulkerson method is iterative

We start with £(u, v) =0 ferall u, v, e V, giving an initial
flow of value 0. At each iteration, we increase the flow value
by finding on “augmenting path” which we can think of simply
as a path from the source s to the sink t along which we can
send more flow and then augmenting the flow along this path.
We repeat this process until no augmenting path can be found.
The max-flow min-cut theorem will show that upon termination,
this process yields a maximum flow.

Q.1 Define the term polynomial bound.

= =

Ans. An algorithm is said to be polynomial bounded if its
worst—case complexity is bound by a polynomial function P
-of input size n. That means, for each input of size n, the
algorithm terminates after atmost P(n) steps;

For instance, n’ + 24n? + 65

@7 at do you mean by NP-complete? /
a

If a language L, is NP-hard and it also belongs to the

class NP, then language L, is said to be NP—complete.

fine optimization problem.

Ans. Any problem that involves the identification of an
optimal (either minimum or maximum) value of a given cost
function is known as optimization problem.

at is NP-hard problem.

8. NP-hard refers to a problem as hard as any NP problem.
Formally, a problem is called NP-hard if it cannot be decided,
or does not belong to NP class, but all NP problems are
reducible to it in polynomial time. ‘

Q.5 What do you mean by interactable problems.

Ans. Certain problems which can be theoretically solved by
computational means, yet are infeasible because they require,
large number of resources. Thesc can be called infeasible or
intractable problems.

Ans. Let us defir
as input, a grapl
notation, with th
first iteratively ca
Sof N+ | numb
each number fr¢
example, by sort
in S, which sho
sequence S defi
binary encoding
where n is the siz
made on the sequ

Observe tt
vertex of G exact
there is a sequenc
if A outputs “yes
each vertex of G
That is, A non-
HAMILTONIA!

- Cycle is in NP.

Our next e
testing. A Boolea
called a logic gat
AND, OR, or N
correspond to ing
edges corresponc
of course, for the
edges are input n
an output node.

Logic Gates:

Fig

Circuit-Sa
circuit with a sin
assignment of vz

h that it visits all the
t L

 use as a certificate the
» verification algorithm
h vertex exactly once,
:ther the sum is at most
n polynomial time.
nan Problem (TSP) is
1 cycle <, TSP. Let

nian. We construct an

h G'=(V,E)e where
e cost function ¢ by

¢, 0), which is easily

Hamiltonian cycle if
t at most 0. Suppose
e h. Each edge in h
Thus, h is a tour in G’
graph G' has a tour h'
es in E'are 0 and 1,

ngraph G .

problem belongs to
[R.T.U. 2017, 2014]

orithm for accepting
e the choose method
as well as the output
ply_ visit each logic
least one incoming
value for the output
ylean function, be it

cran wvalnese fnf fhf‘

y .
short note onL_C-'opk s theorem and its

pplications. [R.T.U. 2017, 2015]

OR

State the Cook’s theorem. What is significance of
this algorithm? IR.T.U. 2014]

Ans. Cook’s Theorem : Cooks modeled a NP-problem (an
infinite set) to an abstract turing machine. Then he developed
a polytransformation from the machine (i.e., all NP-Class
problems) to a particular decision problem, namely, the boolean
satisfiability (SAT) problem.
Satisfiability is in P if and only if NP = P

NP _ -

} / NP-complete
T

NP-hard

Nyl

Fig. -

Definition : “A problem L is NP-hard if and only if satisfiability
reduces to L(satisfiability « L). A problem L is NP-complete
if and only if L is NP-hard and L € NP.
Significance of Cook’s Theorem : If one can find a
poly-algorithm for SAJ, then by using cook’s poly-
transformation one can solve.all NP-Class problems in poly-
time (Consequently, P-class = NP ~ class would be proved).

SAT is the historically first identified NP-hard problem.
Further Significance of Cook’s Theorem : If you find 2
poly-transformation from SAT to another problem Z, then Z
becomes another NP-hard problem. That is, if anyone finds a
poly algorithm for Z, then by using your polytransformation
from SAT to Z, anyone will be able to solve any SAT problem-
instance. in poly-time, and hence would be able to solve all
NP-class problems in poly-time (by cook’s theorem).

- L — — pa——

(.ﬂ

AT AAW W W T Ts v = -

rite alganthm for approximation for set cover
woblem with suitable example. [RT.U-3618,2014] “
OR—=

Explain approximation algorithm for vertex cover.
[R.T.U. 2017, 2013]

| OR
Explain Approximation Algorithms for Vertex and
Set Cover problem. [R.TU. 2016
OR ‘
Explain set cover problem in detail? [R.T.U. 2012]
OR - '

Explain vertex and set cover problem.
[R.T.U. 2011, 2010, Raj. Univ. 2008, 2006, 2005, 2003]

e
Ans. Vertex : The vertex cover takes a graph G and integer

. K as input and asks whether there exists a vertex cover for G -

which contains at most K vertex or not. It is already noticed
that vertex cover is in NP. Now we have to show that it is
NP-hard. For this we have to reduce the 3-SAT problem in

polyriomial time. This reduction is accomplished intwo steps :

e First, it represents an example in which a logic problem
is reduced to a graph problem. '

e Second, it describes an application of the component
dmgn proof technique.

Let us consider that ‘Bg,’ be a given instance of the
3-SAT problem, that is, a CNF Boolean formula, where each
clause has exactly three literals. Now, we create a graph G
and an integer K such that G has a vertex cover of size at

—{(B.Tech. (v Sem.) C.5. Somved Papers @
most K if and only if ‘B’ is satisfiable, For this we add the Algorithm Approx_ vertex_ cover S,
following : Input to the algorithm is the graph G, Ve
e For each input operand ljin the Boolean formula ‘B ’, | Step 1. Initialize the vertex-cover D to be null. de
We add two vertices in G, one of which js labelled as I; and Ced o in
other as . After this we add the edge I, 5. Step 2. The set of edges in G 1s E. - ap
* For each clause Ci=(m+n+2z)in By, we form a | Step 3. Repeat steps 4'to 6 till the set of edges E is empty, an
triangle consisting of three vertices and three edges, :::: : Egg‘:;: :‘:‘ :rp::me\?%: 5:’n ‘g‘ ‘::25;; i su
5 ey
S ol Ieast. e ve.n € per triangle must be in the cover Step 6. Remover every edge incident on either u or v from pu
the set of edges E. sel
Step 7. return C and Exit. int
The running time of this algorithm is O(V +E). are
Enmple sel
for
tak
coy
unc
S, ¢
eler
C= ¢ . ST t . may
E = {ab, ad, b, de, af, cf, ef, ce} - eve
pick bd aribitrarily - - has
C = {b, d} v now
Remove the edges associated with b or d, that is ab, bd The
ad and de, Set_
NowE = {af, cf, ef, ce} /'S
; Step
e @ ‘ Step
-7 . Step
@; : : Step
AN . Step
- RS : Step
®' """""" & Step
Pick cf at random Exa
!tcanbenoﬁcedﬂlitforacovcrtohaven+2Cvertices, C={b,d,c;f})
all the cross edges must be incident on a selected vertey Let il Move edges associated with ¢ or f, that is af, cf, ef
us consider that the n selected vertices from the first leve] Now E = 6
corresponds to true literals, If there exists a satisfying truth S0, stop
assignment, then that means atleast one of the three cross Th; aaverts o
edges from each triangle is incident on a true literal vertex. ¢ .
1s to be noted that by adding the other two vertices to the . ,@ @\ .
cover, we cover all the edges associated with the clause o 1 P Initial
Vertex-cover problem is to find a vertex cover of g 1 i S
minimum size. Using approximation algorithm we have to find @=----- Fomm—m e Fo————- D Pick
a sub-optimal solution to the problem. As a result of this e : : L _
algorithm, we will 8et a vertex-cover with size no more than \\ | .) /,'
twice the .iiz; of an optimal vertex cover, ‘@- --------- -@

(Analysis of Algorithms) —

Set Cover problem : Though set cover is a generalized
vertex cover, the algorighm is slightly different from that
developed above. A set cover is a set of subsets that collectivel y
include all elements of the parent set. The problem can be
approached straightforwardly. We can arbitrarily pick a subset
and put in the cover to initiate. After this we can look for a
subset which has maximum uncovered elements. We may
require an auxiliary set of elements covered till now for this
purpose. If we perform intersection of the covered elements
set and subset, we can choose the subset with minimum
intersection. The process can be continued till all elemetns
are covered. If we maintain a set of uncovered elements, and
select the subset with maximum intersection, we can use it
for initialization also. ‘

Thus, the algorithm developed is shown in Fig., which
takes input the parent set S and family of subsets S, The set
cover C is intialized in step 1 as empty set. U is the set of
uncovered elements, hence it is initialized with all elements of
S, as in step 2. We repeat the loop of step 3 till there are no
clements left uncovered. Step 4 selects that subset which has
maximum uncovered elements, by performing intersection of
every remaining subset S, with U, and picking the one which
has maximum intersection. Since these elements are covered
now, remove them from U by set difference operation in step 5.
The selected subset in included in the cover, through step 6.
Set_Cover (S, S)

//'S is the set to be covered
Step1:C=¢.
Step2:U=8S.
Step 3 : Until U is empty, repeat step 4 to 6.
Step 4 : Pick set S, with max |S; A U]|.
StepS:U=U-S.
Step 6: C=Cu(s,}.
Step 7 : return C
Example

S={a,b,cdefgh

S, = {a, b, ¢}

S,={b,d,f, g}

5‘ = (b, ¢, f, h}
Initially,
C=s¢;U=S={ab,c,d,ef g h}
Pick S' with max ISl ﬁU'=S:
C=Cuis;}={S,;}
U= U“'Sz - {I‘C,C,h}

Pick S, with max [S, " U = §,
C=Cul§}=15.5;}
U=U-=S, ={e, h})

Pick S, with max |S, U =S,
C=CuiS,} = {5,.5,.8,)
U=U-S,=¢

So stop.
Hence the set-cover is {S,. 8., S,}.

— e ——
Q.14 Assuming 3-CNF satisfiability problem to be NF
complete, prove clique problem is also NF

complete. [R.T.U. 2017, 2011, 2011

Ans. A special case of SAT that is particularly useful i
proving NP-hardness results is called 3-SAT.

Tesat (n)SO(n)+TmT (O(n))::»Tm-r(n)z'ra“(ﬂ(n)-()(n))

As 3SAT is NP-hard and because 3SAT is a specis
case of SAT, it is also in NP, Therefore, 3SAT is NP-complete
Clique is NP-complete.
Proof : It is easy to verify thata graph has clique of size k |
we guess the vertices forming the clique. We merely examin
the edges. This can be done in polynomial time. We sha
now reduce 3-SAT to Clique. We are given a set of k clause
and must build a graph which has a clique if and only if th
clauses are satisfiable. The literals from the clauses becom
the graph’s vertices. And collection of true literals shall mak
up the clique in the graph we build. Then a truth assignmen
which makes at least one literal true per clause will force
clique of size k to appear in the graph. And, if no trutl
assignment satisfies all of the clauses, there will not be
clique of size k in the graph. To do this, let every literal i
every clause be a vertex of the graph we are building. W
wish to be able to connect true literals but not two from th
same clause. And two which are complements cannot bot
be true at once. So, connect all of the literals which are not i
the same clause and are not complements of each other W
are building the graph G = (V, E) where:

V = {<x, i>| x is in'the i* clause)
E ={<x,i><y,j>x7ij

Now we shall claim that if there were k clauses an
there is some truth assignment to the variables which satisfie
them, then there is a clique of size k in our graph If th
clauses are satisfiable then one literal from each clause |
true. That is the clique. Because a collection of literals (on
from each clause) which are all true cannot contain a lnter:
and its complement. And they are all coanected by odgs
because we connected literals not in the same clause (exce
for complements). On the other hand, suppose that there is

i e e e e el e 0 e .

—{B.Tech. (V Sem.) C.S. Solved Papers).

ave
the
nent
> the
mall
jeed

lem

TmM:
erals

¥}

> is a

ces F

) one

lique
 pair
0ints
o the

15 a

- E)
e per
factor

nents
jacent
first-

lue 1.
use u,

o~ ‘
ite short note on NP-completeness. [R.T.U. 2017]
OR g
Explain NP and Hard NP Complete with example.
[R.T.U. 2016/
OR

Explain the terms P, NP, NP-Hard, NP-complete

with suitable example. Also give relationship

between them. [R.TU. 2014]
OR

Define the term P, NP, NP-complete. Give suitable

examples of each. [R.T.U. 2013]
_ OR

Define the terms P, NP, NP complete and NP hard

problems. . , [RTU. 2012/
OR

Explain the terms P, NP, NP-complete.
[R.T.U. 2009, Raj. Univ. 2008, 2007, 2605, 2004, 2000f

—_— —

- — e - —_—

e

Ans.(i) P : P is the set of decision problems with a yes—no
answer that is polynomial bound.
A problem is said to be polynomial-bound if there exists
a polynomial bound algorithm for it. It is also to be noted that
not for all the problems the class Phas “acceptably efficient”
algorithm. Also, if a problem does not belong to class P then it
is intractable.
Note : An algorithm is said to be polynomial bounded if
its worst—case complexity is bound by a polynomial function
P-of input size n. That means, for each input of size n the
algorithm terminates after atmost P(n) steps; For instance,
n’ +24n? + 65

Decision Problems : The problems under this class have
the single bit output which shows 0 or | ie., the answer for
the problem is either zero or one.

For instance, some decision problems are :

» Given two sets of strings S, and S, does S, a substring
of S; ?

e Given two sets of elements S; and S,, does both the
sets contain same number of elements ?

‘Any problem that involves the identification of an optimal
(either minimum or maximum) value of a given cost function
is known as optimization problem. For solving optimization
problem, an optimization algorithm is used. For instance, the
optimization problem is as follows.

« Given a weighted graph G, and an integer i, does G have
a minimum spanning tree of weight at most i ?

¢ Given S, does there exist a subset of elements that fits
in the knapsack, and has total profit of at least S 7

We can say that a given algorithm A accepts the string
‘S’ only when A produces the output ‘yes’ on input ‘S’. Asa

set of string is referred to a language, a decision problem can

fmalysu of Algorithms)

also be viewed as a set L of strings where L is a language.
‘Thus, an algorithm A accepts languages L if A produces the
output ‘yes’ on input ‘S’ which belong to L otherwise it
produces output ‘no’,

It is to be noted that the class P problems include all the
decision problems (or languages) L that can be accepted in
the worst—case running time. Thus, for algorithm A, it accepts
S €L, in polynomial time p(w), where ‘n’ is the input size of S
and produces output ‘yes’. But it is noticeable that the class P
.definition does not say anything about output ‘no’. We refer
to this situation as a complement of the algorithm A for output
‘yes’ for a given set of binary strings that are not present in
L.

We can also create an algorithm C that accepts the
complement of L if given an algorithm A that accepts a
language L in polynomial time, p(n). Therefore, if a language
L, showing such decision problem, is in class P. :

(ii) NP : The complexity class NP includes the complexity
class P but allows for the languages that are not present in P.
But, in the case of NP problems we perform an additional
operation:

Select ; This problem selects a bit (0 or 1) in a non-
deterministic way and assigns it to b. When an algorithm A
takes the advantage of Select primitive operation then we
say that A is non—deterministic. In this approach out of several
calls to Select operation, those calls are chosen which lead to
acceptance if there exists a set of outcomes. It is noticeable
that this operation’s working is not same as of using random
choices. '

The complexity class NP includes all decision problems
(or languages L) that can be accepted non-deterministically
in the polynomial time, Thus for a given algorithm A, if Se L,
an input S, there exists a set of outcomes to the Select calls in
A so that it produces output ‘yes’ in polynomial time,p(n),
where n is the input size of S.)

. The definition of complexity class NP does not say
anything about rejection of the string. Algorithm A running in
polynomial time p(n) can take more than p(n) steps when A
produces outputs ‘no’. Also, a polynomial number of calls to
select is involved in the non—deterministic acceptance, the
complement of L is rot necessarily in NP, where L is the
language in NP. .

There exists a special class, called co-NP which includes
all the languages whose complement is in NP, and many
researchers and scientists believe that co-NP = NP.

Is P = NP ? : Most of the researchers and scientists

selieve that class P problems are different from NP and
0 — NP or their intersection.

"_L__

AA.103

., is a language.
' A produces the
L otherwise it

; include all the
be accepted in
hm A, it accepts
e input size of S
that the class P
 ‘no’. We refer
hm A for output
: not present in

at accepts the
that accepts a
», if a language
P.
the complexity
 present in P.
an additional

1) in a non-.
1 algorithm A
ition then we
out of several
which lead to
is noticeable
1sing random

ion problems
rministically
mA,ifSe L,
elect calls in
al time,p(n),

oes not say
A running in
eps when A
erof calls to
*ptance, the
sre L is the

ch includes
and many

NP.

1 scientists

m NP-and

Class P Problems

: Class NPC
Problems

Class NP
Problems

Fig.
Problem : Given a Graph G, does this graph Gcontain a

hether there exists a simple
ed only once other than the

-

Hamiltonian cycle. That means W
cycle such that each vertex is visit
starting vertex or not.

Lemma ; Hamiltonian cycle is in NP.

Proof : Here we will define a non—deterministic algorithm
A that takes an input graph G encoded as an adjacgncy listin
binary notation, with the vertices labelled from 1 ton.

Then we make A to call the Select method iteratively for
obtaining the sequence of vertices, and perform the check so
that all the vertices appear only once except the start vertex
(which comes twice). This can be done by sorting the
sequence. Also, we verify that the sequence defines a cycle
of vertices and edges in G 7

If there exists a cycle in G where all vertices are visited
only once except the first and the last which are the same
then there also exists the sequence for which A produces
output, ‘yes’— Similarly, we can say that if A outputs ‘yes’
then a graph G has cycle in such a manner that all vertices
are visited once except first and last which are the same.
That means A non—deterministically accepts the language
Hamiltonian ~ Cycle. Thus, we can say that Hamiltonain—
Cycle is in NP.

(iii) NP—_Complete ¢ A decision problem L is
ﬁg-iompflete ifitis in cl'a.ss NP for every other problem L' in
» L L'. That means L' is polynomially reducible to L (that
means NP-complete problem are the hardest in NP) ,
Theorem : If .t
Pl it ;;y NP-complete problem belongs to-
Proof : Let any decision problem L& NP andals
Then by the rules of NP-complete problems okl s

VL' eNP,Lc L L¢P
VL'eNP,L'« L AL P

Then according to the polynomi ibili

L P s polynomial reducibili
VL'eNP,L'e p

That means, p = Np,

All NP problems are Np.

ty {ifL, < L,

hard; but some NP-hard

probllems are not known to be Np complete

Provuicin tiat aic 1ot iNI- GUIIPIULE.

Q.16 Wrile short notes on the following ;
Complexity classes of decision problems.
@ Approximation algorithms.
[R.T.U. 2015]

Ans.(a) The purposes of complexity theory are to ascertain
the amount of computational resources required to solve
important computational problems, and to classify problems
according to their difficulty. The resource most often discussed
" is computational time, although memory (space) and circuitry
(orhardware) have also been studied. The main challenge of
the theory is to prove lower bounds, i.e.,that certain problems
cannot be solved without expending large amounts of
resources. Although it is easy to prove that inherently difficult
problems exist, it has turned out to be much more difficult to
prove that any interesting problems are hard to solve. There
has been much more success in providing strong evidence of
. intractability, based on plausible, widely-held conjectures.

In both cases, the mathematical arguments of intractability
rely on the notions of reducibility and completeness. Before
one can understand reducibility and completeness, one must
grasp the notion of a complexity class.

First, however, we want to demonstrate that complexity
thenrv reallv can neave ta even the moet ckentical nractitioner

tne con
to unde
of natt
underst

it 1s bt

machin
compult
probler
model ¢
some w

~ Th
underst
a repert
In order

~and bou

their rel
By con:
non-det
to the 1
machin
surprisi
time en

Sul
to mode

Th

{AA.105)
E The space classes PSPACE and E).(PSPACE are
1s. | de_ned in terms of the DSPACE complexity measure.By
es | Savitch's Theorem.

of | Ans.(b) An approximation algorithm retl'lms asolutionto a
W€ | combinatorial optimization problem that is probably close to
ng optimal (as opposed to a heuristic that may or may not finda
¢ | good solution). Approximation algorithms are typically used
¢S | when finding an optimal solution is intractable, but can also
ur

be used in some situations where a near-optimal sSlution can
be found quickly and an exact solution is not needed.

of Many problems that are NP-hard are also non-
ng approximable assuming P?NP. There is an elaborate theory
;cn that analyzes hardness of approximation based on reductions
ed | from core non-approximable problems that is similar to the
in | theory of NP-completeness based on reductions from NP-
ed -| omplete problems; we will not discuss this theory in class
b but a sketch of some of the main results can be found , which
" | isalsoa good general reference for approximation. Instead,
by | Ve will concentrate on some simple examples of algorithms

good approximations are known, to give a feel for
What approximation algorithms look like.

y * 2-approximation for vertex cover via greedy
e matchings,
; * 2-approximation for vertex cover via LP rounding,
‘e * Greedy O(log n) approximation for set-cover.

* Approximation algorithms for MAX.-SAT.
d

Suppose we are given an NP-com
> | Even though (assuming P ¢=

plete problem to solve,
polynomial-time algorithm that aj

NP) we can't hope for a

problem for Which (perhaps

can't hope for a fas algorith
that glways gets the best solution. Can we hope fogr a t‘a'srtl
algml'lthm that guarantees to get at least o "pre

€€ to find a s |
= nd a solution that's witp:r |
10% of Optimal? If pot that, then how about within a\;nﬂ:m i
of 2 of optima|? Or, anythin NP

[

€) €)
¢ <

)

'f)
¢ ¢ C
¢ € C C¢
S IS IS RS

«la

AA.106

Approximates Strategies ;
We will define

ith a minimum or maximum
measure. To illustrate, the minimum vertex cover problem

may be defined in the following way.
Instance : An undirected graph G = (V, E)
Solution: A subset § < V such th
citherue Sorve s,
Measure : |3

We use the followin
instance I.

* Sol() is the set of feasible solutions to .
m; : Sol(T) - R is the measure function associated
with I. and

Opt(T) < Sol(T) is the feasible solutions with optimal
measure (be it minimum or maximum),

Hence, we may completely specify an optimization
problem IT by giving a set of tuples {(I, Sol(I), m,, Opt(1)))
over all possible instances 1. It is important to kee
that Sol(I) and | may be over completely different
In the above example the set of | is all undirecte
while Sol(I) is all possible subsets of vertices in a

Approximation and Performance : Roughly
an algorithm approximately solves an optimization
it always returns a feasible solution whose meas
to optimal. This intuition is made precise below

at for every {u, v]e E,

g notation for items related to an

p in mind
domains
d graphs,
graph
speaking,
problem if
ure is close

